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Abstract

In this report, we discuss two issues regarding the quasinormal modes. Firstly, we explain how
the lyapunov exponents magically appear in the the formula of oscillation frequency through
WKB method, giving us a trick to measure these frequency through particle dynamics around
photon ring and without perturbing the field around the black hole spacetime. We further find
that this analogy between particle dynamics and scalar dynamics is just a coincidence and has
no deeper meaning as when we probe into higher order WKB approximation, we find no such
analogy to exist. Another important issue discussed is the role of the boundary condition in case
of black hole system. We explicitly show that perturbed black hole systems are intrinsically
dissipative due to the boundary conditions adopted for such system.
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Chapter 1

Introduction

1.1 Motivation

Characterstics modes of vibrations are ubiqutous in nature around us, and black holes are no
exception to this. The characterstic oscillations of black holes, called quasi-normal modes are
produced when the background black hole spacetime is perturbed. The situation here is quite
similar to the system we are familiar with where one usually perturbs the system from equilib-
rium in Newtonian mechanics and quantum mechanics, and studies its properties. For example,
when the bell is hit with a hammer, and disturbed from the equilibrium point, it starts ringing
and then the oscillations fades away after some time. Similarly, black holes are disturbed by
any test field, for example two black holes inspiraling towards each other until they merge into
one single black hole, and consequently the resulting black hole starts producing characterstic
oscillations by which the properties of black holes are studied.

Infact, these binary black holes coalescence can be divided into three phases: a) Inspiral
phase b) Merger phase c) Ringdown. In the inspiral phase two blackholes orbit around each
other with shrinking orbital radius due to emission of gravitational waves. In this phase, the
black holes are separated widely enough to be treated as point particles. As the orbits radius de-
creases, angular frequency increases, and the emission of gravitational waves increases. When
the holes get so close together (innermost stable circular orbit (ISCO)) that they can no longer
be approximated as point particles, they enter the merger phase. In the merger phase, two black
holes collide and the gravitational wave emission is at peak in this phase. In this phase single,
highly distorted black hole is formed at the end. After the merger, this remnant black hole will
produce these damping oscillations called as quasinormal modes.Hence, black hole binaries are
the rich source of gravitational waves for detection by LIGO.

One important property which is studied in black hole mechanics is the stability of the
system i.e. what would happen to black holes when they are perturbed from their initial state.
The question we try to answer in this analysis is equivalent to how the car parked on the top of
the hill would behave after it is disturbed. The criterion in case of black hole for stability is when
there damping of the gravitational waves i.e. negative imaginary values of the characterstic
modes.

The quasi-normal frequencies are also important in gravitational wave astronomy, as these
are an important source of gravitational waves emitted at discrete frequencies by a perturbed
BH. QNMs have discrete, complex frequencies, where imaginary part represents the decay
timescale of the perturbation, and real part determine the oscillation frequency [1]. Gravitational
wave detectors observe these frequencies in the last ringdown phase of the binary mergers. By
analyzing, the ringdown behavior, we can determine different chacterstics of the black hole like
their mass, charge, and angular momentum as Quasinormal frequencies serve as a fingerprint
for oscillating black holes. By numerical calculations of QNMs through different methods we
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can get the values of frequency at which LIGO should operate to check for the the signals of
gravitational waves.

Detection of these frequencies also confirm the existence of the BHs. From 1 April to
1 October 2019, the upgraded LIGO and Virgo interferometers detected 39 new gravitational
wave events from massive collisions between neutron stars or black holes. This has given us the
wide range of black holes that not only had never been detected before, but can reveal uncharted
territories of the evolution and afterlives of binary stars.

1.2 Scope of this report in a nutshell

In chapter 2, we give a brief review of particle dynamics around Schwarszchild black hole
and lyapunov exponent in case of null circular orbits. In chapter 3, we give a brief review of
scalar field dynamics around spherically symmetric and static black hole. Further, we provide
arguments of why the boundary conditions are important in every physical system and what
are its consequences in case of black hole. In chapter 4, we provide basic introduction of
and numerically calculate oscillation frequency by WKB method (approximate) and Leaver or
continued fraction method (Numerically exact) for Schwarszchild and RN black hole.
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Chapter 2

Particle dynamics around Black hole

2.1 Overview

The main motivation of this chapter is to introduce the concept of lyapunov exponent for null
circular orbits which will play an important role to make a point regarding the analogy between
particle dynamics at photon ring and the scalar dynamics.

2.2 Static and Spherical Symmetric metric

The spherically symmetric and static metric describing spherical star can be written in the form
of:

ds2 =− f (r)dt2 +
1

h(r)
dr2 + r2 (dθ

2 + sin2
θdφ

2) (2.1)

This metric can be reduced to Schwarschild metric in case of f (r) = h(r) = 1− 2M/r, and to
Reissner-Nordstr metric in case of f (r) = h(r) = 1− 2M/r +Q2/r2. For the above general
metric, lagrangian takes the form:

L = gµµ ẋµ ẋν =− f t2 +h−1ṙ2 + r2 (
θ̇

2 + sin2
θφ̇

2) (2.2)

One can easily see that the above lagrangian does not depend on t and φ . Therefore, the corre-
sponding killing vectors inner product with the tangent vector along the affine geodesic remains
constant along the geodesic motion, and hence yielding two conserved quantities E and L:

kµ

t Uµ =−(1− 2M
r
)

dt
dλ

= f ṫ = Ẽ (2.3)

kµ

φ
Uµ = r2 sin2

θ
dφ

dλ
= r2 sin2

θφ̇ = L̃ (2.4)

As the problem we are dealing with is central force problem, the orbit will be confined to one
fixed plane let say equatorial plane θ = π/2 at all times. Hence,

f ṫ = Ẽ (2.5)

r2
φ̇ = L̃ (2.6)
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Assuming affinely paramterized geodesic the inner product of tangent vector with itself is con-
stant (1 for the massive particle and 0 for the massless particle). This implies

E2

f
− ṙ2

h
− L2

r2 = δ (2.7)

where δ = 0 for null geodesics and δ = 1 for timelike geodesics. From the above equation, one
can obtain familiar radial equation used to study effective potential

ṙ2 =Vr (2.8)

Vr ≡ h
(

E2

f
− L2

r2 −δ

)
(2.9)

Angular frequency of the orbit is found out to be

Ωc ≡
dφ

dt
=

φ̇

i
=

f L
r2E

=

√
f

r2 =

√
f ′

2r
(2.10)

2.2.1 Lyapunov Exponents for Circular Orbits

Lyapunov exponents are the measure of the rate at which the trajectories diverge. We can also
define lyapunov exponent as the inverse of the instability timescale λ0 ≡ 1/Tλ0 . Any dynamical
system can be written in the form of

dXi

dt
= Hi

(
X j
)

(2.11)

By linearizing the system about any certain orbit we get,

dδXi(t)
dt

= Ki j(t)δX j(t) (2.12)

The solution of the above equation can be assumed as

δXi(t) = Li j(t)δX j(0) (2.13)

where we can easily find the conditions which must be followed by Li j at all times for the
solution to be held true. The eigenvalues of this matrix Li j are known as lyapunov exponents,
and the principal lyapunov exponent is defined as the largest of these eigenvalues, such that

λ0 = lim
t→∞

1
t

log
(

L j j(t)
L j j(0)

)
(2.14)
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Now, applying it for the circular orbits in static, and spherically symmetric spacetimes, we find
the linearized equation about the circular orbit as,

δ̇ r = [
1

grr
]r=rcδ pr (2.15)

δ ṗr = [
d
dr

(
∂L

∂ r

)
]r=rcδ r (2.16)

where dots represents derivatives w.r.t. λ which is an affine parameter. Now converting to
Schwarzschild time t, we get

Ki j =

(
0 K1

K2 0

)
(2.17)

where

K1 = t−1 d
dr

(
∂L

∂ r

)
(2.18)

K2 = (ṫgrr)
−1 (2.19)

From the definition (2.14), principal lyapunov exponent comes out to be 1

λ0 =±
√

K1K2 (2.20)

From the effective potential (2.8) for the particle in static and spherical symmetric spacetime,
we can find the expression for lyapunov exponent in terms of potential.

λ0 =

√
V ′′r
2ṫ2 (2.21)

We can conclude that real values of lyapunov exponents correspond to unstable orbits.

Null Geodesics
Taking double derivative of equation (2.8), and evaluating at r = rc of the circular null geodesic,
we obtain

V ′′r (rc) =
hc

fc

L2

r4
c

[
2 fc− r2

c f m
c
]

(2.22)

By using torotise coordinate, and angular coordinate (2.10, we can convert the lyapunov expo-
nent expression (2.21) in the form,

λ0 =−
1√
2

√
r2

c fc

L2 V n
r (rc) =

1√
2

√
−r2

c
fc

(
d2

dr2
∗

f
r2

)
r=rc

(2.23)

1The proof of the (2.20) can be found in appendix A.1.
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2.3 Schwarzschild metric

Till now, we were dealing with the general spherical symmetric metric, but now let us assume
the schwarschild metric. The effective potential in this case would reduce to

Vr = E2−
(

1− 2M
r

)(
L
r2 +δ

)
(2.24)

which can be further interpreted as
ṙ2 = E2−2Vδ (2.25)

where,

Vpart(r) = 2Vδ=1(r) =
(

1− 2M
r

)(
1+

L2

r2

)
(2.26)

Vphot(r) =
2Vδ=0(r)

L2 =
1
r2

(
1− 2M

r

)
(2.27)

Condition for circular geodesic (ṙ = r̈ = 0) reduces to

L2(r−3M) = δMr2 (2.28)

From this condition, we can make two important remarks: (i) Circular orbits can only exist for
r ≥ 3M (ii) Null Circular orbits exist only at r = 3M.
We can also analyse the stability of the circular orbit by checking the sign of V

′′
r (sign of V

′′
r

is opposite of V ′′part and V ′′phot , hence, stability conditions would reverse their sign): (i) Stable
Orbit: V ′′r < 0, Unstable Orbit: V ′′r > 0
V
′′
r reduces to the form

(Vr)
′′ =−2δ1M(r−6M)

r3(r−3M)
(2.29)

Another two important remarks about the circular orbits can be made by analysing the above
equation.(i) Circular orbits with r ≥ 6M are stable. (ii) Circular orbits with 3M ≤ r < 6M are
unstable. Alternatively, we can analyse the graph of effective potential for the case of timelike
geodesic, and conclude that the inflection point of the potential is at radius 6GM, above which
stable circular orbits can be found.

2.4 Bibliography Notes

This whole chapter was greatly influenced by chapter 2 from [2] and [3].
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Chapter 3

Scalar Field Dynamics around Black hole

3.1 Overview

The main motivation of this chapter is to illustrate the role of boundary conditions in any physi-
cal system and in particular what are the consequences of the usual boundary conditions in case
of black hole.

3.2 Static and Spherical Symmetric metric

Consider the perturbation of the spherical symmetric and static spacetime by a massive scalar
field. Klein Gordan equation in this background can be written as :

(�−µ
2)φ = 0 (3.1)

Decomposing the scalar field into spherical harmonics Y`m(θ ,φ) = P̀ m(θ)eimφ (orthonormal set
of functions), time harmonics and radial part (which is indeed due to time-independence and
the spherical symmetry of the metric) as

Ψ(t,r,θ ,φ) =
∞

∑
`=0

`

∑
m=−`

Ψs=0
`m (r)

r
Pem(θ)e−iωteimφ (3.2)

where Plm(θ) is the associated legendre function satisfying legendre equation. Inserting the
above equation in the equation (3.1) and using legendre equation, we get the radial wave eqau-
ation for a spherical symmetric and static background:

f h
d2Ψs=0

I
dr2 +

1
2
( f h)

dΨs=0
l

dr
+

[
ω

2−
(

µ
2 f +

`(`+1)
r2 f +

( f h)′

2r

)]
Ψ

s=0
l = 0 (3.3)

We can reduce the above equation into Schrodinger type (removal of first order derivative)1by
using tortoise coordinate r? defined as

dr
dr∗
≡ ( f h)1/2 (3.4)

1Removing first order derivative to solve a second order differential equation is a common method found in
textbooks. Therefore, the aim of using tortotise coordinates is exactly this i.e. to remove the first order derivative.
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to obtain the following radial equation:

d2Ψs=0
I

dr2
∗

+
[
ω

2−V0(µ)
]

Ψ
s=0
I = 0 (3.5)

where effective potential reads as

V0(µ)≡ f µ
2 + f

`(`+1)
r2 +

( f h)r

2r
(3.6)

We can see the above differential equation doesn’t depend on m as it shouldn’t be because we
are dealing with spherically symmetric spacetime.
The range in terms of tortoise coordinate is from r?→−∞ (corresponding to r→ 2M) to r?→∞

(corresponding to r → ∞) which easily be seen by integrating the equation (3.4) and using
common choice of integrating constant in literature :

r∗ = r+2M ln
( r

2M
−1
)

(3.7)

When the effective potential (3.6) is written in terms of r?, we can make three important remarks
about the asymptotic behavior of potential
(i) It tends to zero (exponential decay ∼ exp( r?/M))as r?/M→−∞

(ii) It tends to µ2 (power law tail∼ l(l+1)
r2 ) as r?/M→ ∞.

(iii)Potential tends to zero in both asymptotic regimes unless µ 6= 0

Our aim is now to solve for ω in the radial equation. Viewing it as eigenvalue problem, the
problem boils down to finding eigen values of L operator where

L =
d2

dr2
∗
−V (3.8)

3.3 Role of Boundary Condition

Taking a step back, let us first analyze the normal modes in physical system that we are familiar
with, e.g. a string of length L that is fixed at both ends. The oscillations on the string can be
described by the differential equation

d2y
dt2 −

T
ρ

d2y
dx2 = 0 (3.9)

where ρ and T describes the density and tension in the string, reswpectively. The general
solution of the above equation is

y(t,x) =
∞

∑
n=−∞

cn exp(iωnt)Φ(x), (3.10)

where ωn is the normal mode spectrum and constants cn describes the excitation of the given
mode. In order to determine specific solution for y(x), one has to provide boundary condition,
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e.g. Dirichlet type [y(t,x = 0),y(t,x = L)] and initial conditions [y(t = 0,x),y(′)(t = 0,x)]. For
a standing wave on an infinite length string, one gets the wave solution

y(x, t) = 2ymax sin
(

2πx
λ

)
cos(ωt) (3.11)

As there are no boundary conditions in this case, ω can take any value i.e. spectrum is continu-
ous and infinite.
Similarly, if we take the specific case of standing wave on a finite length string, then there would
be two boundary conditions at the strings end.

y(0, t) = 0 (3.12)

y(L, t) = 2ymax sin
(

2πL
λ

)
cos(ωt) = 0 (3.13)

The latter boundary condition leads to the restriction on the frequency of the standing waves

f =
nv
2L

(3.14)

where v is the speed of the wave along the string.
By the above examples one can identify the crucial difference between ωn and cn. The fre-
quency spectrum are determined by the boundary conditions and are independent of the initial
conditions. We cna also see from above examples that there are many ways to excite the system
(depending on the initial conditions), but the set of possible modes doesn’t depend on this. It
may happen that some modes are not excited for some initial conditions, but it is not possible to
excite the mode which is not the part of the mode spectrum. Therefore, to find any fundamental
property of the system for e.g. density or tension in the string, the knowledge of the modes ωn
is essential. Therfore, we can reach the conclusion that boundary conditions are important to
know fundamental properties of the system.
Black hole systems are no exception to this, and therefore we need to specify boundary condi-
tions here[4], in order to solve the differential equation(3.5). As potential tends to zero in both
asymptotic regimes in case of massless scalar field, therefore, solution of the radial equation
(3.5) near horizon and at spatial infinity can be written as Ψ ∼ e−iω(t±r+). Classically nothing
should leave the horizon, therefore, only ingoing wave should be present,

Ψ∼ e−iω(t+r+) (3.15)

By discarding the incoming waves from infinity and considering the massless scalar field, the
radial equation (3.5) solution in at spatial infinity range is

Ψ∼ e−iω(t−r+) (3.16)

The nature of ω depends on the boundary conditions as was in the simple case of vibrations
of string. In the case of black holes, we find that the frequency is a complex variable. The
imaginary part of the frequency is non zero due to this boundary condition. The consequence
of this is that the eigenfunctions becomes damped in nature, and do not form the complete set.
Therefore, the perturbed black hole spacetimes are intrinsically disspative due to the boundary
conditions. Now, we are left with to show explicitly how the boundary conditions make the
modes complex and why imaginary part of it is associated with the decay timescale of the
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perturbation. The latter is easy to show. Let ω = ω ′+ iω ′′

Ψ = Re(eiωt) = e−ω ′′t cos(ω ′t) (3.17)

where e−ω ′′t is the decaying factor, and hence imaginary part is associated with decay timescale,
and real part associated with the oscillation frequency.

3.4 Consequences of Boundary Condition

Figure 3.1: Graph of effective potential for the case of scalar field at `= 1

As from the figure we can observe that thre is a potential barrier against an incoming
wave. To analyse how the incoming waves are affected, consider the incoming wave of the
form Phi = exp(−iωx). If R(ω) and T (ω) are the reflection and transmission coefficients
respectively, the reflected and transmission terms are R(ω)exp(iωx) and T (ω)exp(−iωx).
Therefore due to superposition we can write the wave form near spatial infinity as Phi =
exp(−iωx) +R(ω)exp(iωx) , and near horizon as Φ = T (ω)exp(−iωx). The radial differ-
ential equation has a constant Wronskian therefore we can write

W = [ψ,ψ∗] =
dψ

dx
ψ
∗− dψ∗

dx
ψ =−2iω|T (ω)|2

as x→−∞, and we can write

W = 2iω
(
|R(ω)|2−1

)
as x→ ∞. As wronskian is constant therefore, we get

|R(ω)|2 + |T (ω)|2 = 1 (3.18)

which is the condition of conservation of energy.
Now, applying boundary condition that only outgoing waves exist at spatial infinity. By apply-
ing these boundary conditions we get

|R(ω)|2 =−|T (ω)|2 (3.19)

The above relation has two consequences:
1) By above equation, we conclude that if the usual boundary conditions are followed then the
amplitude of the reflected and transmitted waves is equal.
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2)We can also conclude from the above equation that frequency ω is a complex number. Hence,
the oscillations from BH are damped/growing depending on sign of imaginary part of the os-
cillation. Equation (3.19) doesn’t hold in Kerr metric spacetime which is shown in appendix
A.3.

3.5 Bibliography Notes

Section 3.2 is influenced from [2] and rest of the sections were influenced by [4] and [5].
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Chapter 4

Analysis of Quasinormal modes

4.1 Overview

Another way to show explicitly how the boundary conditions make the modes complex, we
have to find the eigen values of the radial differential equation. We will adopt two methods here
to solve the differential equation
(i) Numerically exact method - Leaver’s method or continued fraction method.
(ii) Approximate method - Wentzel–Kramers–Brillouin (WKB) approximation method.
We will review both the methods in this chapter.

4.2 Master Equation

As earlier, we separated the angular dependence for the scalar field, the angular dependence can
also be removed for spin-one and spin-two case via vector and tensor spherical harmonics. As
a result, we get the master equation which takes the similar form as the radial equation in case
of scalar field,

d2Ψ∗f
dr2
∗

+
[
ω

2−V∗
]

Ψ
∗
f = 0 (4.1)

where

Vs = f

(
`(`+1)

r2 +
2M
(
1− s2)
r3

)
(4.2)

=

(
1− 2GM

r

)(
Λ

r2 +
2βGM

r3

)
(4.3)

Assuming Q(r) = ω2−Vs, differentiating Q(r?) with respect to r? coordinate, we obtain

dQ
dr∗

=

(
1− 2GM

r

)[
2Λ

r4 (r−3GM)+
2βGM

r5 (3r−8GM)

]
For an extremum, Q′(r?) = 0, we get the condition,

2Λ

r4 (r−3GM)+
2βGM

r5 (3r−8GM) = 0
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From the above condition we get the position where the extrema occurs at,

r0 =
3GM(Λ−β )±

√
9G2M2(β −Λ)2 +4 ·Λ ·8βG2M2

2Λ
(4.4)

Taking the positive value and taking eikonal limit (large Λ limit), the radius approximates to
3GM.

r0 ≈ 3GM, as Λ→ ∞ (4.5)

Even for small l’s the location of the peak is very close to the photon orbit.[6]

4.3 Leaver’s Method

Now, we want to illustrate the theory developed by Leaver, commonly known as continued
fraction method, to numerically search for the roots of the radial equation(3.5). Taking 2M=1,
equation(3.5) can be written as

r(r−1)
d2Ψs

I
dr2 +

dψ

dr
+

[
ω2r3

r−1
− `(`+1)+

s2−1
r

]
ψ = 0 (4.6)

Now, substituting ψ = r1+s(r−1)iωy, we get

r(r−1)d2y
dr2 +[(2s+1+ iω)r− (2s+1)]dy

dr +
[
ω2r(r−1)+

+2ω2(r−1)+2ω2− `(`+1)+ s(s+1)+(2s+1)iω
]

y = 0
(4.7)

The above equation is the generalized spheroidal wave equation. Now, substituting

y(r) = e−iσrr−(s+1+2iσ) f (u) (4.8)

where u = r−1
r . We get by substituting,

u(1−u)2 d2 f
dr2 +

(
c1 + c2u+ c3u2) d f

dr
+(c4 + c5u) f = 0 (4.9)
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where coefficients in terms of B1,B2,B3 are

c1 =B2 +
D1

x0
(4.10)

c2 =−2 [c1 +1+ i(ω +ωx0)] (4.11)
c3 =c1 +2(1+ iω) (4.12)

c5 =

(
B2

2
+ iω

)(
B2

2
+ iω +1+

B1

x0

)
(4.13)

c4 =− c5−
B2

2

(
B2

2
−1
)
+ω(iω)− iωx0c1 +B3 (4.14)

=−
(

B2

2
+ iω

)(
B2 +

B1

x0

)
− iωx0c1 +B3 (4.15)

and B1,B2,B3 are defined as,

B1 =−(2s+1)
B2 = 2(s+1+ iω)
B3 = 2ω2− `(`+1)+ s(s+1)+(2s+1)iω

Substituting a series expansion of the form:

f (u) =
∞

∑
n=0

anun (4.16)

we get a three-term recursion relation for the coefficient a j:

α0a1 +β0a0 = 0 (4.17)
αnan+1 +βnan + γnan−1 = 0, n = 1,2, . . . (4.18)

where α j,β j and γ j are simple functions of the frequency ω, ` and s:

αn = n2 +(2−2iω)m+1−2iω
βn =−

[
2n2 +(2−8iω)n−8ω2−4iω + `(`+1)+1− s2]

γn = n2−4iωn−4ω2− s2
(4.19)

The series (4.16) should be convergent and the condition which guarantees this to be true comes
from the mathematical theorem due to Pincherle:

0 = β0−
α0γ1

β1−
α1γ2

β2−
·· · (4.20)

The above equation can also be shown to be equivalent to the form,

βn−
αn−1γn

βn−1−
αn−2γn−1

βn−2−
. . .

α0γ1

β0
=

αnγn+1

βn+1−
αn+1γn+2

βn+2−
. . . (4.21)

Now, our problem boils down to solving equation(4.20) or (4.22) for ω . We can do this numer-
ically, and get the values of ω which comes out to be complex number, as we earlier suggested.
This method gives the most accurate numerical solution for the scattering problem.
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4.3.1 Application: Schwarzschild metric

Leaver’s method gives exact values of ω . We have computed it at different l,n values as below:
For scalar field, s=0

l n σLeaver
0 0 0.38355+0.154866i

1 0.247176+0.206776i
2 0.231103+0.198446i
3 0.221964+0.198356i

1 0 0.686916+0.131385i
1 0.597396+0.207954i
2 0.590163+0.197671i
3 0.587957+0.195249i

2 0 0.766744+0.32998i
1 0.975864+0.209931i
2 0.968364+0.197383i
3 0.967956+0.194602i

For Electromagnetic field, s=1

l n σLeaver
0 0 0.242061−0.0625i

1 −1.37812∗10−21−1.06261∗10−21i
2 −1.29273∗10−17−3.37112∗10−17i
3 1.66362∗10−18−3.54525∗10−19i

1 0 0.579943+0.0820929i
1 0.516248+0.214982i
2 0.500726+0.192284i
3 0.499325+0.186996i

2 0 0.97934+0.0877117i
1 0.929004+0.21101i
2 0.915742+0.19539i
3 0.915651+0.191652i
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For Gravitational field, s=2

l n σLeaver
0 0 0.38355+0.154866i

1 0.247176+0.206776i
2 0.231103+0.198446i
3 0.221964+0.198356i

1 0 0.686916+0.131385i
1 0.597396+0.207954i
2 0.590163+0.197671i
3 0.587957+0.195249i

2 0 0.766744+0.32998i
1 0.975864+0.209931i
2 0.968364+0.19738i
3 0.967956+0.194602i

4.4 WKB Method

Apart from Leaver’s method, there exist another method to solve for approximate values of
eigenvalues of radial equation (3.5), known as WKB method. Consider the equation,

d2Ψ

dx2 +Q(x)Ψ = 0 (4.22)

which is equivalent to the master equation, where we have taken x as a tortoise coordinate. The
domain of Q(x) can be split in three regions: a region I to the left of the turning point where
Q(x1) = 0, a matching region II with xI < x < xII , and a region III to the right of the turning
point where Q(xII) = 0. By standard perturbation techniques, we will solve for ψ in region I
and III.
Relation with Quantum Mechanics: For a wave incident on the barrier from x = ∞ with a
given amplitude, it is a standard calculation in quantum mechanics to determine the amplitude
of the wave reflected back to x = ∞ and that transmitted to x = −∞. If the energy is below the
peak of the potential, the reflected amplitude is comparable to the incident amplitude, while the
transmitted amplitude is much smaller i.e. transmitted amplitude is e(− γ) times the incident
wave amplitude and reflected amplitude is

√
1− e−2γ times the incident wave amplitude. But

for the case of black holes, there is no incident wave coming from infinity due to our boundary
conditions, and it is purely outgoing at spatial infinity. Therefore, due to conservation of energy
(3.19), the transmitted and reflected waves have comparable amplitudes. The only way we can
have comparable amplitudes for transmitted and reflected waves is when the turning points are
close to each other or when there is only one turning point. In quantum mechanics this occurs
when energy is equal to the maximum value of the potential. Here, in this case we demand Q(x)
maximum value to be 0 i.e. Q(x)|max = 0. However, if Q(x)|max ≥ 0 or the two turning points
are close to each other, we can apply standard WKB method matching solutions of the other
two regions.
Validity for WKB method to work: The WKB method gives good results when the turning
points are very near to each other[7], and when the potential for the black hole system has one
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peak in region II.
From the above potential we find that WKB approximation gives good approximate answers in

Figure 4.1: Blue (`= 0), Red (`= 1), Green (`= 2)

lower ` limit.
Firstly, let us find the approximate solutions in region I and III. Assuming potential varies slowly
in these regions , we Introduce a small valued parameter ε in such a way that the unperturbed
equation is solvable, equation 4.22 is written as

ε
2 d2ψ2

dx2 +Q(x)ψ = 0 (4.23)

Taking ansatz as
ψ = e

1
ε ∑εnS(x)n (4.24)

Putting it in equation 4.23, we get(
S′0 + εS′1 + ε

2S′2 + . . .
)2

+
(
εS′′0 + ε

2S′′1 + ε
3S′′2 · · ·

)
+Q(x) = 0

=⇒
(
S′20 + ε

2S′21 + ε
4S′22 +2εS′0S′1 +2ε

2S′0S′2 +2ε
3S′0S′3 +2ε

3S′1S′2 + . . .
)

+
(
εS′′0 + ε

2S′′1 + ε
3S′′2 + . . .

)
+Q(x) = 0

Equating the coefficients of ε and higher powers , we get:

S′20 +Q(x) = 0
2S′0s′1 +S′′0 = 0

S′21 +2S′0S′2 +S′′1 = 0

Therefore, we have shown that in region I and III, when the two turning points are close togther,
the solution ψ to the first order approximation is

ΨI ∼ Q−1/4 exp
{
±i
∫ x

x2

[Q(t)]1/2dt
}

(4.25)

ΨIII ∼ Q−1/4 exp
{
±i
∫ x1

x
[Q(t)]1/2dt

}
(4.26)

Taylor expanding Q(x) around the central maximum x0 to the second order,

Q(x) = Q(x0)+
1
2

Q′′
∣∣∣∣
x0

(x− x0)
2 +O

(
(x− x0)

3 (4.27)
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By change of variables

k =
1
2

Q′′o

t = (4k)1/4eiπ/4 (x− x0)

ν +
1
2
=− iQ0√

2Q′′0

(4.22) equation can be written as,

d2ψ

dt2 +

(
ν +

1
2
− 1

4
t2
)

ψ = 0 (4.28)

whose solutions are parabolic cylinder functions, denoted by Dν(z). Therefore, solution in
region II is the superposition of these functions:

Ψ = ADν(z)+BD−ν−1(iz), z≡
(
2Q′′0

) 1
4 ei π

4 (r∗− r̄∗) (4.29)

By imposing the boundary conditions, and taking asymptotic behavior of parabolic functions
we get, 1/Γ(−ν) = 0, or ν = 0,1,2,3, .... Therefore, we get "Bohr-Sommerfield quantization
rule" in the first order approximation as,

Q0/
√

2Q′′0 = i(n+1/2), n = 0,1,2, . . . (4.30)

This condition equivalent to what we found in our standing waves discussion, and this is the
condition for our modes to be discrete and complex.
From ω2 = Q+V , we get the final form of ω in terms of quantities calculated at the maxima of
the potential,

ω
2
n = i

(
n+

1
2

)√
2Q′′0 +

(
1− 2GM

r0

)(
Λ

r2
0
+

2βM
r3

0

)
(4.31)

In eikonal limit, we can relate QNM to lyapunov exponent

ωQNM = Ωcl + i
(

n+
1
2

)
|λ | (4.32)

which shows that the rate of divergence of circular null geodesics at the light ring, as measured
by the principal Lyapunov exponent, is equal (in the geometrical optics limit) to the damping
time of black-hole perturbations induced by any massless bosonic field.

We can also go to higher orders of Q(x) around its maxima in equation (4.27), and get the
quantization rule in the similar way. Working out in this way upto 6th order approximation, we
get the final form of omega in terms of quantities calculated at maxima of potential,

ω
2 =

[
V0 +

(
−2V ′′0

)1/2
Λ̃(n)

]
− iα

(
−2V ′′0

)1/2
[1+ Ω̃(n)] (4.33)

where,

Λ̃(n) =
1(

−2V ′′0
)1/2

[
1
8

(
V (4)

0
V ′′0

)(
1
4
+α

2
)
− 1

288

(
V ′′′0
V ′′0

)2 (
7+60α

2)] (4.34)
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Ω̃(n) =
1(
−2V ′′0

) [ 5
6912

(
V ′′′0
V ′′0

)4 (
77+188α

2)− 1
384

V ′′20 V (4)
0

V ′′0 3
(
51+100α

2)
+

1
2304

(
V (4)

0
V ′′0

)2 (
67+68α

2)+ 1
288

V ′′′0 V (5)
0

V ′′20

(
19+28α

2)
− 1

288
V (6)

0
V ′′0

(
5+4α

2)] .
(4.35)

An important remark is that the above formula will be valid for any spacetime metric, as every
perturbed spacetime takes the form (??).

4.4.1 Application: Schwarzschild metric

The graph of the effective potential has one peak, and the turning points are close to each other,
hence we can apply WKB method. Values of ω for different spins at different values of spherical
harmonics l, overtone number are numerically calculated below:
For scalar field, s=0

l n σWKB
0 0 0.104648−0.115196i

1 0.0891898−0.354959i
2 0.063479−0.594572i
3 0.0255008−0.83504i
4 0.0247885+1.07711i
5 0.0872284+1.32127i

1 0 0.291114−0.0980014i
1 0.262212−0.307432i
2 0.223543−0.52681i
3 0.173702−0.748629i

2 0 0.483211−0.0968049i
1 0.463192−0.29581i
2 0.43166−0.503433i
3 0.392578−0.715869i
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For Electromagnetic field, s=1

l n σWKB
1 0 0.291114−0.0980014i

1 0.262212−0.307432i
2 0.223543−0.526817i
3 0.173702−0.748629i

2 0 0.483211−0.0968049i
1 0.463192−0.29581i
2 0.43166−0.503433i
3 0.392578−0.715869i

3 0 0.675206−0.096512i
1 0.660414−0.2923441i
2 0.634839−0.494118i
3 0.602182−0.701053i

For gravitational field, s=2

l n σWKB
2 0 0.373162−0.0892174i

1 0.346017−0.274915i
2 0.302935−0.471064i
3 0.247462−0.672898i

3 0 0.599265−0.0927284i
1 0.582355−0.281406i
2 0.5532−0.476684i
3 0.515747−0.677429i

4 0 0.809098−0.0941711i
1 0.796499−0.284366i
2 0.773636−0.478974i
3 0.743312−0.6783i
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4.4.2 Application: Reissner–Nordström metric

Similar to the case of Schwarzschild metric, we numerically computed the ω for scalar field
assuming q = 0.5

l n Q σWKB
0 0 0.5 0.247376−0.249018i

1 0.5 0.887109−0.922351i
2 0.5 1.37073−1.41889i
3 0.5 0.142375−0.863119i

l n Q σWKB
1 0 0.5 0.26604−0.145384i

1 0.5 0.700671−0.66721i
2 0.5 0.992813−0.97177i
3 0.5 0.0604634−0.758635i

l n Q σWKB
0 0 0.5 0.327777−0.125534i

1 0.5 0.660095−0.584159i
2 0.5 0.898499−0.844405i
3 0.5 0.150439−0.733876i

4.5 Bibliography Notes

Section 4.2 was influenced from [2], section 4.3 was influenced by [8], and section 4.4 was
heavily influenced by [9].
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Chapter 5

Conclusion

The late-stage ringdown phase of the gravitational waveform is often associated with the null
particle orbit (“photon ring”) of the black hole spacetime. We have explicitly shown that this
relationship is valid only upto second order of taylor expansion of the potential function around
the maximum. When the potential function is expanded to higher order, the relationship be-
tween null particle orbit and the gravitational waveform vanishes, hence showing us that the
association was indeed superficial.

We have shown how unlike most idealized macroscopic physical systems, perturbed BH
spacetimes are intrinsically dissipative due to the presence of an event horizon. Due to the
boundary conditions QNMs have complex frequencies, the imaginary part being associated
with the decay timescale of the perturbation. The corresponding eigenfunctions are usually not
normalizable, and, in general, they do not form a complete set.

We have also numerically calculated the oscillation frequency of QNMs in case of Schwars-
zchild BH by WKB and leaver method, and of RN black hole by WKB method. By these
numerical calculations we have shown how the stability of Schwarszchild and RN black holes.

In future my aim is to study vector and tensor decomposition, QNMs in case of Kerr black
hole, analysis of gravitational waveform in ringdown phase and QNMs in case of compact stars.
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Appendix A

Appendix A.1

A.1 Derivation of Conservation of Energy through lyapunov
exponent

Theorem: For any matrix Li j such that

dLi j

dt
= KimLm

j (A.1)

where

Kim =

(
0 X
Y 0

)
then every element of L matrix is equal.

Proof: Solving the differential equation we get the system of differential equation as

da
dt =

h
ṫ |rc

db
dt =

h
ṫ |rd

dc
dt = ṫ−1(

d ∂L
∂ r

dr

)
|ra

dd
dt = ṫ−1(

d ∂L
∂ r

dr

)
|rb

(A.2)

Solving the above set of equations we find two symmetric equations showing that both will have
same solutions, thus indicating that all the elements of the matrix L should be same.

In the case of particle dynamics X = h/ṫ and Y = ṫ−1 d ∂L
∂ r

dr , hence by the above theorem all
quantities of Li j matrix are same. Assuming,

Li j =

(
a a
a a

)
and solving set of equations (A.1), we get the final differential equation which we have to solve
for a as:

d2a
dt2 −

(
h
ṫ2

∂

∂ r
∂L
∂ r

)
|ra = 0 (A.3)

as the coefficients are constant, thus the solution of the above equation can be written as
a = exp(

√
γt) where γ =

(
h
ṫ2

∂

∂ r
∂L
∂ r

)
|r = K1K2 using equation (2.18). Thus using definition
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of lyapunov exponent (2.14), we find

λ0 =
√

K1K2 (A.4)

which shows energy of conservation is followed.
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