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Basics

The discussion throughout the talk will be on arbitrary spacetime (M,g) with connections defined on it.
@ For affinely parameterized curve, geodesic equation is : U*V,U? =0

@ For any two vector fields intersecting (as shown below) the lie derivative of one vector field w.r.t other
vanishes.

Lu€* =Leu* =0 = U’ =u%e’

For affinely parameterized geodesic : u“é, =0

w0

Figure: Deviation vector between two neighbouring geodesics

Ashley Chraya Action Formulation in General Relativity May 25, 2021 3/32



Basics of Timelike Congruence

A congruence is a family of curves such that through each point there passes only one curve from this family.

@ For affine geodesics, the following relationships holds:
Uua =1, ujt’ =0, uBe’ =¢E50°, ua =0
Deviation vector points in the directions transverse to the flow of the congruence.

@ Spacetime metric g.s can be decomposed into longitudinal and transverse part as hag = gog — UaUg

Evolution of Deviation vector: £3u” = B5¢°

@ B, is purely transverse : B,su® = u*B,s =0
. ha gt
Hence we can decompose it as : Bag = %~ + 0ap + Wap

Expansion Parameter : 6 = V,u'’

This parameter describes the fractional rate of change of congruence’s volume.

Shear Tensor 0.5 : This is a symmetric and traceless quantity, which describes how the shape of
the congruence changes.

Rotation Tensor w.s: This is the antisymmetric part of B; which describes how the congruence of
geodesics will rotate.
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Theorems for Timelike Geodesics

@ Frobenius Theorem: Congruence of Curves is Hypersurface Orthogonal iff
ViliUg =0
For timelike geodesic, rotation parameter should vanish wa, = 0
@ Raychaudhuri’s Equation: The evolution equation for the expansion scalar:
% = —% —+ Uaﬁaag — wo‘ﬂwa@ — RjjUfLIj
@ Focusing Theorem: For matter following Strong energy condition R,su®u® > 0 and the geodesic
congruence be hypersurface orthogonal, the expansion must decrease during its’ evolution.
49 <0
dr —
For 6 = 6, < 0 under these conditions 6 goes to —oo along the geodesic within the proper time 7 < %

The congruence will develop a caustic within finite proper time.
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Basics of Null Geodesics

For affine geodesics the following relationships holds:

k%Ko =0, k3k° =0, k3% =E3K°, k% =0

Last condition falls to remove component of £ in the direction of k“ and hence, deviation vector doesn’t
points in the directions transverse to the flow of the congruence.

The transverse metric is 2-Dimensional, hence to isolate transverse part of the metric we need two null
vectors. Spacetime metric g, can be decomposed as

gaB = hag + KuNs + NaKﬁ

where N*N, = 0 and k*N,, = 1 do not determine N“ uniquely.
Evolution of Deviation vector: £3k° = Bg¢”
B, is not purely transverse : B,sk” = k®B,s = 0 but B,z is not orthogonal to N°.
By isolating transverse component we get:

€7 = ho gt = €% + (Nu&") k™

(E5K")" = B3€”

where B§ = h h B
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o ng_ﬁ can be interpreted as the transverse relative velocity between the neighbouring geodesics.
Therefore, decomposing it as we did earlier:

)
Boz,@ = ﬁ + 0ap + Wap

Expansion Parameter : § = V;k’
This parameter describes the fractional rate of change of null-congruence’s cross sectional area.

0-© o-o

o,

Areanth

00

Areanch

Areant hy

Figure: Physical interpretation of Parameters
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Theorems for Null Geodesics

@ Frobenius Theorem: Congruence of Curves is Hypersurface Orthogonal iff
V[/UjUk] =0
For Null geodesics, rotation parameter should vanish wz, = 0
@ Raychaudhuri’s Equation: The evolution equation for the expansion scalar:
gff = —%2 + 0“5005 - w"‘ﬁwaﬂ — R,-,-kikj
using B.3B*f = B.3Bas
Weak Null Energy Condition <= Strong Energy Condition

@ Focusing Theorem: For matter following Strong /Weak Null energy condition R.sk“k” > 0 and the
geodesic congruence be hypersurface orthogonal, the expansion must decrease during its’ evolution.

de
a <0

For 6 = 6, < 0 under these conditions 6 goes to —oo along the geodesic within the affine parameter

2
A S T

The congruence will develop a caustic within finite proper time.
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Theorems: Continued

@ For Null Hypersurface, Null congruences K is tangent to the hypersurface, and thus are the null
generators of the hypersurface.

@ These null congruences satisfies the geodesic equation
KoV ok? = kk®

Therefore, null hypersurface is generated by null geodesics.

® = constant

Figure: Family of Hypersurfaces orthogonal to congruence of null geodesics
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Basics

In a four-dimensional spacetime manifold, a hypersurface is a three-dimensional submanifold that can be
either timelike, spacelike, or null.

b,

Timelike Hypersurface: Normal can be normalized n, = T o V172
where ¢ is 1 if hypersurface is spacelike and -1 if hypersurface is timelike.

ox<™

Induced Metric or First fundamental form: Induced metric is 3 dimensional ha, = gases e{f where e3 = 53

Normal n,, is defined such that n,eg =0

Null Hypersyrface : Unit normal is not defined. We let k, = ¢ , making the hypersurface generated by the
null geodesics.

As K< is tangent to hypersurface, we can take null geodesics parameter as one of the coordinates of
hypersurface y@ = (X, 6%)

Induced Metric or First fundamental form: Induced metric is 2 dimensional as h becomes degenerate
oaB = Jop€i€s, €5 = (’ZXTZ)A
Normal N, is defined such that N,eg = 0, No.K® =1
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Integeration on Hypersurfaces

@ Non-Null case: Invariant three dimensional volume (surface element) on the hypersurface is
dx = |h|"/2 &y
dX,, = n.dX is the directed surface element that points in the direction of increasing ¢

@ Null case: As hy, is degenerate h = 0 and n, does not exist. Therefore, the above expression should
be generalized.
Directed Surface element

d¥, = cLap 7€) e]dy

This expression holds for both null and non-null hypersurfaces.
@ Taking intrinsic coordinate y' as A we can show d¥,, = k" dS,., d\ where 2-dimensional surface

element dS,., = .15, €5 €]d%0

Further evaluating, we get

dSas = 2k Ngj/od?0
@ Gauss Theorem
JyAuV—gdix = ¢, A%,
We can obtain conservation of charge if the divergence of A~ vanishes.
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Tangent Vector Fields

@ Tangent vector fields A~ purely tangent to hypersurface admit the decomposition
A% = A%}
@ Instrinsic Covariant Derivative: Defined as the component of the projected A..3, we get
VaAp = VoAsese, = Aap — MeapA°
where we have defined lNoap = €] €ay,5€}

@ Assuming this connection to be metric compatible and this connection to be symmetric in its last two
argument we get the expression for connection:

rcz-zb = % (hca,b + hcb,a - hab,c)
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Extrinsic Curvature

@ Extrinsic Curvature or Second fundamental form 1. Defined as the normal components of VA% e}
or 2. Defined as the component of the tagential covariant derivative of Vzn® we find,

Kab = Na€5€)
We can get k. from the above expression: kog = Vang — enan’V.,ng

@ K, is a symmetric tensor. Therefore,

e e

= 3 (Lngas) €56,
Physical Interpretation : Ky is related to normal derivative of the metric

@ We further note that K = h*® Ky, = n%,

Physical Interpretation : K is equal to the expansion of the congruence of geodesics that are hypersur
orthogonal. Therefore, k = 6

Kab = Na;p) eg‘ e

@ hy is concerned with purely intrinsic aspects of hypersurface.
kap is concerned with extrinsic aspects.
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Equation of Motion and well Posed Problem

@ The trajectory of the system between two instants of time is the extremum of the action integral.
Algl, of b, ] = [2 L(ai, g, D)t
@ By varying the trajectory, the change in action is
_foLs,1® t oL _ d (oL
s = [Ggoa] o+ Jiatoa |55 - 5 (5)
@ By setting the end points fixed 5g = 0 and making A = 0 we get

oL _ d oL _
aq’ dat ag'
@ Upon expanding the time derivative we get 2nd order DE
PL oL 9PL
ag'ogl — aq ag'ogl

Remark : Action Principle tells us what need to be fixed at the boundary without we assuming anything.
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Addition of derivative term

Let L = L(q, g, q), to get the 2nd order EOM, we have to set 6g; = 0 and §g; = 0. etting 6g = 0 at the
endpoints is no longer sufficient to kill the boundary term. We are setting 4 boundary conditions for 2nd
order EOM. For most choices of boundary data EOM would not render any solution. Addition of total
derivative can make the variational principle ill-posed.

Let Lagrangian be linear in g

5A1 = JA + of (QQ,Clz, t2) —of (q1vq7 t1)

Examgle
A= [ dt(~3qq) = [f dt (3¢7) — J¥ dtg (2qq)
Varying the action we obtain

2
L 1, .
—/ dtéqq + (499); — 5(99q + asa);
1

2
L1 .
—/ dtoqd + 5(goq — 95§);
1
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Remarks on Boundary term

2
.1, .
0 sA= —/ dtoqq + 5(0q — qoq);
|
@ Bulk equation is still 2nd order but we have to fix both §¢ = 0 and 5g = 0 as the boundary conditions
which makes the problem ill-posed.

@ Solution: To make this problem well posed we add boundary terms so that we are left with Lagrangian
which does not depend on higher derivatives in the action.

@ We will see ahead how this is relevant in the action for gravitational field. This is exactly in analogy with
Gravitational action where we add GHY term to make the action well posed.
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Introduction

@ Motivation : Just as the action for scalar/ vector field, action for gravitation can be dependent on
dynamical variable and derivative of dynamical variable but no non trivial scalar Lagrangian can be
constructed from the metric and its first derivative because in local inertial frame g.s = 75 and
0+9as = 0. Only choice left with us is to use 9,0, 9.z in the action but we are further constrained to get
2nd order field equations.

@ To get 2nd order differential equation the 2nd derivative of g.s should be linear in action. By doing this,
we get some boundary term which we can cancel by adding another term to the action, which in this
case is GHY boundary term.

@ Therefore, the most simple scalar that can be constructed which has second derivative of metric is Ricci
scalar which is constructed from the Riemann tensor, which contains second derivatives of the metric.

@ Action for gravitational field is
167GA = [, d*x\/=gR (9, 9g,0%9)
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Variation of the action

@ Assuming g.s the dynamical variable, varying the action w.r.t. it
8Aen = [, d*X\/=9Gasdg®® + [5 x\/—GVadn®
= [, d*x/=9Gapdg*” + [,,0n*dL,
where 6n" = g*#4r , — g7"éTa,

@ Assuming the boundary is timelike, variation of metric at the boundary vanishes ég.s = 0, due to which
variation of the tagential derivative of metric also vanishes §0,.g.s€3" = 0 we get :

167 GSA = / d*x\/—g (Raﬁ - %Rgaﬁ) 5g°”?
v

e [ @y VIR E (9,59.:)
oV

Ashley Chraya Action Formulation in General Relativity May 25, 2021 18/32



Gauss Theorem: lllustration

t =t ,spacelike surface

r=R
timelike surface
[As R— o this
surface goes to
spatial infinity] y

/ t=t, spacelike surface

X

Figure: The Gauss theorem in a spacetime volume is illustrated
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Solution - |

@ To get the bulk equation we have to fix normal derivatives also but fixing that makes our action principle
ill-posed and hence the field equations are not consistent with boundary data.

@ Therefore to make gravitational action well posed we have to add a boundary term so that normal
derivative part cancels away.

AGHY =2 fc’}M d3ye\/EK
where K is the trace of extrinsic curvature

Remark : As extrinsic curvature is related to normal derivative of the metric and boundary term
is normal derivative of the metric, therefore, trace of extrinsic curvature is not a bad guess.

@ Varying the GHY term we can cancel our boundary term and obtain the bulk term.
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Well-Posed Gravitational Action

@ Now, we will derive the field equations without assuming a priori that variation of the metric vanishes.

Remark : In earlier calculation we expanded tensor I to variation of metric terms, and then assumed
the variation of the metric vanishes. Here, we will convert éI" to covariant derivatives using

0(Vang) =Vaéng — (6F15) ny
0 (Van™) =Vadn® +n7org,

@ By varying Einstein Hilbert Action we get:
O = [, d*xy/=G[Gupdg™] + [, d*xy/=GV (97761 — 070 ]
= ), d'xv/=g[Gasdg™’] + [5, I xVhB[n:]
where 5[n,] = n, [gaﬁérlg - gwérgu]

B[n,] = Va (0u*) = 6 (2Van®) + (Vans) 6g°°
where 6u® = 6n™ + g*Péng
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Well Posed Gravitational Action

@ We can easily see du” lie on the hypersurface. Using the definition of intrinsic covariant derivative, we
get Vadu? = V,o0u® — ea,du” where a, = n°Vsn,; and V.0u? is the intrinsic covariant derivative.

@ Further, by property of a*dn, = 0 we get, B[n,] = Va (6U%) — 6 (2Van®) + (Vans — enag) 6g°°
where we used the definition of extrinsic curvature kog = Vang — enan'Vv,ng

@ Finally using the properties of extrinsic curvature we get the boundary term

/ o xv/hB[ve] = / FxVhVa (5U%) + 6 / o x2KVh
oV oV oV

+ [ d*xVh(Khas — Kug) 6h™°
oV

@ We have to add 2K +v/h term,which is the GHY term, to cancel the boundary term and get the field
equation.

@ At the boundary we need not have to fix whole metric but just induced metric h?
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Boundary term in Electrodynamics

@ Electrodynamics is the vector field theory where A’ is the 4-vector for which the action for the free
Electrodynamic field is given by

A=—-3 [, FiF*a*x
where  Fi = 0;Ax — OkAi
@ By assuming A’ as dynamical variable and varying the action w.r.t it, we get:

sA=6 (- [ d*xFpF®
167 Jy,

-1 / ad*xoF¥sA; — 1 / d®xE.GA
4/, 4 J;

@ Bulk term will lead to Maxwell equations and to vanish boundary term we have to fix spatial part of
vector potential A at the t = constant surfaces. Further, we can show that we have to fix just magnetic
field at the t = constant surfaces.
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Introduction

@ The purpose of 3+1 decompostion is to express the action in terms of the Hamiltonian it is necessary to
foliate V with a family of spacelike hypersurface.

Figure: Foliation of Spacetime by Spacelike Hypersurfaces
@ Assuming a scalar field t(x*) such that t = constant, and on each hypersurface we assume coordinates

y2. Also assuming y? is constant along the flow of the curve, which defines the mapping of the point P
to P’ and so on.
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Line Element

@ Therefore, the transformation exists x* = x*(t, y?).

: o ox
@ Tangent vector along the curve is t (a—)

Tangent vectors on the hypersurface is e = (%); a)
t

@ Lapse function N, and shift vector N? can be defined as
t* = Nn® + N%e3 and n, = —No,t
where n,, is the normal vector.

Figure: Decomposition of {* into lapse and shift vector
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Line Element

@ The metric in the coordinates (t, y?) can be expressed as
ds® = —N2 df® + hap (dy? + N2 dt) (dy” + N° dt)
@ Further, we can easily get /—g = Nv/h

@ For displacement along the curve, increment in proper time is related to the increment in coordiante
time as

dr? = (N2 + habNaNb) ar?
@ If the congruence is Hypersurface orthogonal, Shift vectors N? vanishes and hence proper time would
be related to coordinate time by lapse function as:

dr? = (Nz) ar?
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Schematic of Decomposition

Figure: Decomposition of t* into lapse and shift vector

Foliation of V by ¥;

St embedded in X;

St embedded in V

B embedded in Spacetime
Foliation of B by S;
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3+1 Decomposed Action

Surface y & B
Unit normal n*“ r* re
Coordinates ya A Z
Tangent vectors e; € e
Induced metric hao  oaB i

Extrinsic curvature Ky, kag K

@ 3+1 Decomposition of the action

T

t
1 / dt{/ (R + K*Kay — K2) NVR a
4 Y

+2 ¢ (k — ko) Nﬁdze}
St
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@ Let Ay = Lihap, we can show
hab = 2NKap + Nzjp + Npja
@ Therefore, the action does not involve N, nor N2. The dynamical variable is induced metric only, lapse
and shift only serve to specify the foliation of V into spacelike hypersurfaces.
@ Because the foliation is arbitrary, we are free to choose lapse and Shifts.
@ Momentum conjugate to induced metric is defined as p® = ﬁab (v/—9gLg) where Lg is the bulk part of
lagrangian. It can be shown that
(16m)p® = Vh (K* — Kh™)
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Applications

@ Singularity Theorems

@ Boundary term for Null Hypersurfaces
@ Numerical Relativity

@ Relativistic Hydrodynamics

Ashley Chraya Action Formulation in General Relativity May 25, 2021 30/32



References

1. Eric Poisson. A relativist’s toolkit: the mathematics of black-hole mechanics. Cambridge university
press, 2004.

2. Thanu Padmanabhan. Gravitation: foundations and frontiers. Cambridge University Press, 2010.

3. T Padmanabhan. A short note on the boundary term for the hilbert action. Modern Physics Letters A,
29(08):1450037, 2014.

4. Ethan Dyer and Kurt Hinterbichler. Boundary terms, variational principles, and higher derivative
modified gravity. Physical Review D, 79(2):024028, 2009.

5. Krishnamohan Parattu, Sumanta Chakraborty, Bibhas Ranjan Majhi, and T Padmanabhan. A boundary
term for the gravitational action with null boundaries. General Relativity and Gravitation, 48(7):1-28,
2016.

Ashley Chraya Action Formulation in General Relativity May 25, 2021 31/32



Thank You
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