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Abstract
Abstract

Most of the time, the observations have the power to push the well-established field to
its most stringent tests. One such observation was of the supernovae type-Ia. There are
myriad number of cosmological models explaining this expansion of the universe. One
such model is Variable Chaplygin gas model. The variable Chaplygin gas interpolates from
dust-dominated era to quintessence dominated era. The model is found to be compatible
with current type Ia Supernovae data. In this report, we constrain the parameters of the
variable Chaplygin gas model, Ωm and n, using supernova events and gravitational wave
events at different redshifts.
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1
Introduction

1.1 | Motivation
It is most often that the observations have the power to push the well established field to its
most stringent tests. One such observation was of the supernovae type-Ia (SNe-Ia) which es-
tablished that the universe is expanding. Inference of this observation from the best fit was
the value of cosmological constant density parameter to be around 0.7. These results were fol-
lowed by massive experimental efforts to find other independent observational means to test
the expansion of the universe theory. After SNe-Ia observation, there has been number of other
such observations which establishes that the expansion is accelerating such as Baryon Acous-
tic Oscillations (BAO), Cosmic Microwave Background Radiation (CMBR), Gamma-ray Bursts
(GRBs). The observational results of SN Ia together with the anisotropy of cosmic microwave
background radiation (CMBR) power spectrum and clustering estimates show that our uni-
verse is mainly made up of two components: dark matter and dark energy. The dark matter
contribute 25% of the total energy density of the universe whereas dark energy contributes 70%
of the total energy density of the universe.

SN observations have been one of the important way to constrain the model in cosmology.
SN, along with BAO and CMB observations are now the three major pillars of any analysis.
Though there are other ways like Large scale structure surveys, gravitational lensing surveys
etc., which all help to constrain parameters of the model. We would not be able to do any
justice in this report to discuss these observations in any detail, hence, we would only focus on
Supernova type-Ia observations.

In fact, it was in 1920s when Alexander Friedmann and Georges Lemaître independently
provided first cosmological model which explained that the universe is expanding. There are
many different cosmological models which explain the expanding universe. One such model
which is most favourable is ΛCDM model (Lambda cold dark matter) where Λ is the cosmo-
logical constant. This model is referred to as the standard model of Big Bang cosmology. This
standard model of cosmology explains a lot of observations. The cosmological constant in gen-
eral relativity combined with the assumed homogeneous and isotropic FRW metric description
of spacetime gives us ΛCDM model. Λ refers to the cosmological constant which is commonly
known as dark energy (a force that repels gravity). CDM is the cold dark matter where dark is
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Chapter 1. Introduction 1.2. Scope of this report in a nutshell

because we can’t see it, and cold is because it behaves like non-relativistic particles compared
to massless particles, for example neutrinos, which are relativistic particles, hence, hot. As dark
matter and dark energy together contributes to around 95% of matter in the universe, the re-
maining 5% are Baryonic matter i.e. all the particles of the standard model of particle physics,
not just Baryons. In spite of this model to explain many observations, it suffers from fine tuning
problem. Hence, there are many cosmological models which remains active areas of research in
cosmology today and they all involve trying to understand the nature of dark matter and dark
energy. Different models explored can be broadly categorized into two classes. One class of
models involve reforming the geometry part of the Einstein’s equations. This includes gener-
alisation of gravity action and higher dimension spacetime. The other class of models alter the
matter component of the Universe in the Einstein’s equations. In this approach exotic matter
with negative pressure is added to the mass distribution of the Universe. Some of the models
based on this are quintessence, k-essence, tachyons, barotropic fluid etc. These are collectively
known as Dark Energy models. Recently, an alternative class of models have been proposed
which involve a slowly evolving and spatially homogenous scalar field or two coupled fields.
However, these "Quintessence” models also suffer from fine tuning problem. Quintessence,
k-essence are scalar field models, while Dark Energy models include barotropic fluids whose
pressure is a function of energy density, P = f (ρ). The relationship between pressure and en-
ergy density determines the dynamics of the fluid. One such example of a barotropic fluid is
the Chaplygin gas, which will be our main focus in this report.

Bringing pieces together, we will try to explain how to put constraints on the parameters
of the Variable Chaplygin gas model using supernova events and gravitational wave merger
events. In chapter 2, we give brief review of the basic cosmology topics like FLRW, Freidmann
equations etc., Λ CDM model, Variable Chaplygin gas model. In chapter 3, we review how
Supernova and gravitational wave merger events can be used to measure cosmological dis-
tances. In chapter 4, we discuss supernova and gravitational wave datasets which we use to
constrain the cosmological model. In chapter 5, we discuss usages of some packages in grav-
itational wave data analysis. In chapter 6, we discuss the statistical tool we use to constrain
the model. In chapter 7, we constrain the parameters of the Variable Chaplygin gas model
using Chi-square minimization method and discuss our results obtained using both SN and
GW merger events. Finally, in chapter 8, we discuss what lies further for us to work on in this
domain.

1.2 | Scope of this report in a nutshell
The absolute scope of this project is to find the performance of a novel cosmological model
i.e. Variable Chaplygin gas model with an new branch of astrophysics i.e. gravitational wave
astronomy. The project will pave a way to test if gravitational waves can be used as a new

2



Chapter 1. Introduction 1.2. Scope of this report in a nutshell

independent way to constrain cosmological models. The project will also provide us an un-
derstanding if gravitational wave merger events can be used to obtain Hubble constant as an
independent test from cosmic distance ladder. Meanwhile comparing the performance of Vari-
able Chaplygin gas in both supernovae dataset and Gravitational Waves merger event dataset
helps us to calibrate our current understanding on the universe.

3



2
Cosmology: Basics

2.1 | The FLRWmetric
Friedmann–Lemaître–Robertson–Walker (FLRW) metric is the solution of the Einstein’s equa-
tion assuming space is homogeneous and isotropic. The general form of the metric can be
derived from homogeneity and isotropy of the space. We will derive it step by step below:
Firstly, we note that the general metric can be written as

ds2 = gαβdxαdxβ

= g00dt2 + 2g0idxij − hijdxidxj
(2.1)

where i,j runs as 1, 2, 3 and hij is the spatial metric.
(1) Assuming isotropy of the space i.e. we can transform spatial coordinates as x → −x, and
the equation of motions should not change i.e. metric remains same. We can easily conclude
from the transformation that g0i = 0. Therefore, the metric can be written as

ds2 = g00dt2 − hi jdxidxj (2.2)

(2) Using the transformation dτ =
√

g00dt, we can write the metric as (writing t instead of τ)

ds2 = dt2 − hi jdxidxj (2.3)

(3) Due to isotropy the space should be spherically symmetric therefore, the spatial metric can
be written in cartesian coordinates as

dΣ2 = hi jdxidxj = dx2 + dy2 + dz2 (2.4)

as all mixed terms dxdy, dydz etc vanishes due to isotropy. Now considering spherical coordi-
nate system, hi j should only be dependent on r and t i.e., hi j(r, t) (hij can be dependent on time
as the symmetries are only applied at t=constant hypersurface) and shouldn’t be dependent on
angles i.e., θ and φ. Further, we assume that this function is separable i.e. hi j(r, t) = a(t)λ(r).
Therefore, the spatial metric becomes

dΣ2 = a(t)2λ(r)2[dr2 + r2(dθ2 + sin2 θdφ2)] (2.5)

4



Chapter 2. Cosmology: Basics 2.1. The FLRW metric

Taking λr = r
′

and redefining λ
′
= λ

r dλ
dr +λ

, we get

dΣ2 = a2[λ
′2dr

′2 + r
′2(dθ2 + sin θdφ2)] (2.6)

Till now we have imposed isotropy, but now we will impose homogenity further to get the ex-
pression for λ

′(r). We now seek the metric that describes a hypersurface immersed in a spher-
ical four-dimensional Euclidean space. The properties of this hypersurface will obviously be
the same for every point belonging to it due to homogenity. Therefore the above spatial metric
obtained will be equivalent to the metric which we will derive now of a 3D sphere. For a 3D
sphere we know,

a2 = x2
1 + x2

2 + x2
3 + x2

4 (2.7)

where a is fixed. Using 4- dimensional spherical coordinates,

x1 = a cos χ sin θ sin φ

x2 = a cos χ cos θ

x3 = a cos χ sin θ cos φ

x4 = a sin χ

(2.8)

Differentiating 2.7, and using it in ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 we get

ds2 = a2 (dχ2 + sin2 χ
(
dθ2 + sin2 θdφ2)) (2.9)

As this metric should be equivalent to 2.6, we conclude sin χ = r and dχ = λdr i.e.

λ =
1√

1− r2
(2.10)

Now, generalizing the line element

a2 = x2
1 + x2

2 + x2
3 + kx2

4 (2.11)

This line element is homogeneous as it was in the previous spherical case. Now, proceeding as
before, we obtain

ds2
3 = a2 (dχ2 + F(χ)

(
dθ2 + sin2 θdφ2)) (2.12)

where

F(χ) =
sin χ k = 1

χ k = 0
sinh χ k = −1

(2.13)

and
λ =

1√
1− kr2

(2.14)
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Chapter 2. Cosmology: Basics 2.1. The FLRW metric

Therefore, in conclusion, the homogeneous and isotropic metric obtained which is known as
FLRW metric is

ds2 = dt2 − a2(t)
[

dr2

1− kr2 + r2 (dθ2 + sin2 θdφ2)] (2.15)

where k can take values k = 0,±1. As we have seen that to derive the expression for λ(r),
we needed homogenity of space, but to derive the expression for scale factor a(t), we will
need Einstein’s field equations. This model is sometimes called the Standard Model of modern
cosmology, although Lambda-CDM model is also often called called the Standard Model of
modern cosmology. The FLRW metric was independently derived by the authors in the name
of FLRW in 1920s and 1930s.

2.1.1 | Co-moving Coordinate v/s Physical Distance
Co-moving coordinates expand with universe at the same rate as the universe, hence, distance
between any two objects calculated in this coordinate also remains same. Therefore, co-moving
distance remains same between any two observers at any epoch. In FLRW metric in spherical
coordinates, the spatial coordinate dr is the co-moving coordinate.
On the other hand, physical distance as we know changes as the objects move away due to
expansion of the universe from each other. We can relate the physical distance and co-moving
distance as follows:
Assuming FLRW metric and light travelling the null geodesic (taking c=1), we obtain,

dt2 = a2(t)
[

dr2

1− kr2 + r2 (dθ2 + sin2 θdφ2)] (2.16)

Also assuming dθ=dφ=0, we get,

cdt =
adr√

1− kr2
(2.17)

Further, if we assume light travelling a small distance, we obtain the relation,

cdt = a(t)dr (2.18)

We should notice that this relation is valid only for small distance in general but for flat space
k=0, this relation is universally valid.
Here, r is the comoving distance which is fixed on space and time and "move" with it. The
physical distances D = a(t)r vary instead with the expansion. For convenience, we often
define the present distances such that D = r, i.e. a(t = 0) = 1. In this way, the astronomical
distances measured at the present epoch, for example, the distance between the Milky Way
and the Virgo Cluster, are also comoving distances, which are fixed forever. In other words, the
comoving distance of the Virgo cluster is 15 Mpc at every epoch.

6



Chapter 2. Cosmology: Basics 2.1. The FLRW metric

2.1.2 | Hubble’s Law
Hubble’s law is the observation that galaxies are moving away from Earth at speeds propor-
tional to their distance. The farther they are the faster they are moving away from Earth.
This observation can be derived from FLRW metric as follows: The physical distance mea-
sured along a null geodesic ds = 0 for a small propagation and considering dθ = dφ = 0, is
D = cdt = a(t)dr. Thereofre, we have the Hubble’s law

Ḋ = ȧdr = HD (2.19)

where H = ȧ
a is the Hubble constant. Hubble’s law applies to any system that expands (or

contracts) in a homogeneous and isotropic way, and it is valid only for small distances. For flat
space, it is valid at any distance scale.

2.1.3 | Redshift
Consider a wave source at rest. The interval between two crests is dt = λem

c where λem is the
wavelength of the emitted source and c is the speed of the light. If now in the same time
interval dt, the source moves away from the observer at velocity v, then the distance travelled
by the source is vdt and therefore, the observed wavelength is λob = cdt + vdt. Thus there is a
difference between emitted wavelength and observed wavelength (doppler effect).

dλ

λ
=

λobs − λem

λem
=

v
c

(2.20)

The redshift is defined as
z ≡ λobs − λem

λem
(2.21)

If the source is following Hubble’s law Ḋ = v = HD from which we obtain

dλ

λ
=

v
c
=

HD
c

= Hdt =
da
a

(2.22)

Taking integeration from emitted time to observed time, and normalizing the scale factor such
that at the present epoch a = a0 = 1, we obtain λob

λem
= aem. Using this we can obtain an

important relation which relates easily calculable redshift with the cosmological function a(t):

a =
1

1 + z
(2.23)

The above equation is valid only for small distances as we have assumed source follows Hub-
ble’s law which is followed only for small distance propagation. Also we have assumed here
that in dt time source moves a distance of vdt taking non-relativistic kinematics into account.
Therefore, if we assume relativistic version or if the source is moving at relativistic speed ( at
large distance v«c is no longer valid) the above relation will not be valid.

7



Chapter 2. Cosmology: Basics 2.2. Energy-Momentum Tensor and Energy Conditions

2.2 | Energy-Momentum Tensor and Energy Conditions
We can define energy-momentum tensor as:

Tαβ = (p + ρ)UαUβ − pgαβ (2.24)

In the rest frame Uα = (1, 0, 0, 0), Tαβ can be written as

Tνµ = diag(ρ,−p,−p,−p) (2.25)

Conservation of energy momentum tensor is

Tµν
,µ = 0 (2.26)

2.2.1 | Continuity Equation and Conservation of scalar quantity
Below, we will show by two methods how continuity equation implies conservation of the
concerned quantity. Assuming, the continuity equation,

∂k Jk = 0 (2.27)

Now, by using Gauss theorem, ∫
Ω

d4V
(
∂µ Jµ

)
=
∮

∂Ω
dS
(

Jµnµ

)
(2.28)

where nµ is the normal of the boundary surface. Assuming the boundary to be a cylinder as
shown in the figure below, and assuming the concerned quantity vanishes at spatial infinity,
we can show the conservation of the quantity.

Figure 2.1: The Gauss theorem in a spacetime volume is illustrated

8



Chapter 2. Cosmology: Basics 2.2. Energy-Momentum Tensor and Energy Conditions

There is another intiutive way to show that continuity equation implies conservation of scalar
quantity. Assume a box in the spacetime, through the faces of which current is flowing. If we
consider the face of the box in the yz plane then we can conclude that current flowing through
the box in x direction is −∂x jx, similarly for the other faces of the box we can show the similar
result. Hence, the total current passing through the box is −∇.~J which should be equation to
the total change in the quantity in the box ∂ρ

∂t , hence

∂ρ

∂t
+∇.~J = 0 (2.29)

2.2.2 | Energy-MomentumTensor Conservation andContinuity equation
Taking conservation of stress energy tensor,∇µTµν = 0 , and substituting Tµν = (ρ+ p)(UµUν)+

pgµν , and project the equation on different directions to get the 2 equations:

Uµ∂µρ = −(ρ + p)∇µUµ (2.30)

(ρ + p)Uµ∇µUν = −∇ν p−UνUµ∇µ p (2.31)

The first equation is a conservation equation ρ, and the second is a conservation equation for
the momentum.
We can also obtain the former equation by taking time component of the energy momentum
tensor conservation 2.26. This equation is referred to as continuity equation.

∂ρ

∂t
+ 3H(p + ρ) = 0 (2.32)

Note: Continuity equation remains invariant under the addition of constant to the Lagrangian
of gravitational action.

2.2.3 | Dust, Ideal Fluid and Radiation
Dust is a pressure-less fluid which has an exact solution to Einstein’s field equation whose
energy momentum tensor can be written as

Tab = ρUaUb (2.33)

where Ua is the 4-velocity of the dust and ρ is the energy density of the dust. In contrast
to pressure-less dust, ideal fluid also has an exact solution to Einstein’s field equation whose
energy momentum density can be written as

Tab = (ρ + p)UaUb − pgab (2.34)

9
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Ta
b = (ρ + p)UaUb − pδa

b = ρUaUb − p(δa
b −UaUb) (2.35)

where Pa
b = δa

b −UaUb is the Projection tensor as it is symmetric and Pa
b Ua = 0 perpendicular

to 4-velocity vector i.e. all the 4- vectors perpendicular to Ua can be obtained. Therefore, for
ideal fluid

Ta
b = ρUaUb − pPa

b (2.36)

We know that for radiation equation of state reads as,

p =
ρ

3
(2.37)

Using the above equation and taking the trace of the equation, 2.36, we get Ta
a = 0. Therefore,

trace of energy momentum tensor for radiation vanishes. This vanishing of energy momentum
tensor is a general feature of any electromagnetic field which is explored below.

2.3 | Modified gravity and Cosmological models
In 1920s, Alexander Friedmann theorized that the Universe is expanding using Einstein field
equations after Vesto Slipher identified redshift of many galaxies. This theory was proved by
the observational evidences from Edwin Hubble. George Lemaitre provided the linear relation
between the distance of the galaxy and the redshift observed in them due to expansion of the
universe.

In early 1990s, with the observations of type Ia Supernovae (SNe-Ia) by independent re-
search groups Supernova Cosmology Project (SCP) and the High-Z Supernova Search, the ex-
pansion of the universe was found to be accelerated compared to the initial assumption of the
linear expansion by George Lemaitre. By the Friedmann-Robertson-Walker metric of the Uni-
verse, the expansion is directly proportional to the amount of matter present in the Universe.
With accelerated expansion, the universe needed additional presence of mass or energy to be
explained with the current cosmological model. With no evidence on these additional matter
from Electromagnetic Radiations, this additional energy was termed as Dark Energy.

Similarly in 1930s, Fritz Zwicky found in the Coma cluster that mass of the galaxies has
to be higher than the visible matter to validate the higher orbital speed of the periphery of the
galaxies. He proposed a presence of electromagnetically "dark matter" causing such anomalous
high speed of rotations. This was proved by observations of Vera Rubin and others in 1970s
and the theory of Dark Matter came into consideration.

The pressing need to explain such phenomenon resulted in theorizing different models
which clubbed in these exotic entities in them. All different models can be categorized into
two classes. One class of models try to modify the geometry part of the Einstein’s equation i.e.
Einstein tensor Gij. These theories are known as modified gravity. Einstein-Hilbert action is

Ag =
−1

16πk

∫
R
√
−gd4x (2.38)
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In modified gravity, action is written as

Amg =
−1

16πk

∫
f (R)

√
−gd4x (2.39)

where f (R) is a function of Ricci scalar,Ag is the action for GR, Amg is the action for modified
gravity. One also work in higher dimensions instead of four as a part of modifying gravity.

As due to observations, it was not possible to explain the accelerated universe if only nor-
mal matter is taken into consideration. Hence, exotic matter i.e. dark matter has to be added to
the energy momentum tensor. The other class of models assumes universe is governed by gen-
eral relativity but alter the matter component of the Einstein’s equation i.e. Energy-Momentum
tensor Tij. Models in both classes explain the expanding universe. The presence of these exotic
entities are brought in the ΛCDM (Λ Cold Dark Matter) model. Models based on this dark
matter can be further divided into quintessence models and barotropic fluids. In quintessence
models slowly evolving and spatially homogeneous scalar field or two coupled fields are con-
sidered. It differs from cosmological constant explanation of expansion of universe in the sense
that cosmological constant is constant over time whereas in this model time varying scalar field
is assumed. Quintessence models also suffer from fine tuning problem, therefore, possible al-
ternative which we should look into is dark energy models like barotropic fluids. Therefore,
we now know that observations show that exotic matters like dark energy and dark matter are
required to explain the acceleration of the universe, below we express the energy momentum
tensor of dark energy in comparison to other matter.

2.4 | Chaplygin Gas Model
Dark energy models including barotropic fluids have pressure as a function of energy density,
P = f (ρ), which determines the dynamics of the fluid. These models also contains classes
with varying equation of state. One specific example of the barotropic fluid is Chaplygin gas
(CG) whose equation of state is P = −A/ρ, where A is a positive constant. Chaplygin gas
model correctly describes the effects of dark energy and dark matter, and is a alternate for our
current standard model of cosmology. As described in the previous section dark energy models
have negative pressure, CG model also has a negative pressure associated with it and the more
generalized model of CG is described by the equation of the sate given as

p = − A
ρα

(2.40)

where p is the pressure, ρ is the energy density, both in a comoving reference frame with ρ > 0,
A and α (0 < α ≤ 1) are positive constants (α = 1 corresponds to CG). In FLRW metric, energy
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conservation equation is given by

ρ̇i +
3ȧ
a
(pi + ρi) = 0 (2.41)

This is the fluid equation which holds for radiation(r), Baryonic matter(b) and chaplygin gas(ch),
i.e. i = r, b, ch. In this report, we assume the universe is filled with CG-radiation-baryonic mat-
ter. Using 2.40 and 2.41, we can get the expression for the energy density of the CG given by

ρch =

(
A +

B
a3(1+α)

) 1
1+α

(2.42)

where B is the constant of integration and a is the scale factor. Hence, we got the equation of
state and energy density of the CG model given by 2.40 and 2.42 respectively. We can similarly
find the energy density for baryonic matter and radiation given their equation of state.
Equation of state for baryonic matter is p = 0. Using energy conservation equation 2.41 we can
obtain the energy density of the baryonic matter given by

ρb = ρb0a−3 (2.43)

where ρb0 is the integration constant. Equation of state for the radiation is p = ρ/3. Radiation
is the ideal fluid, hence, energy momentum tensor in curved spacetime can be written as Ti

j =

(p + ρ)UiUj − pgi
j. Taking trace of this equation we get Ti

j = p + ρ − 4p = ρ − 3p. Using
equation of state we get the trace of the energy momentum tensor for the radiation to vanish.
This vanishing of trace of TI j is a common feature for theories which are conformally invariant.
Anyways, repeating the same story which we did for CG and baryonic matter i.e using energy
conservation equation 2.41, we can obtain the energy density of the radiation which is given by

ρr = ρr0a−4 (2.44)

Total energy density can be written as the sum of the components 2.42, 2.43, 2.44, given by

ρtotal(a) =
(

A +
B

a3(1+α)

) 1
1+α

+ ρb0a−3 + ρr0a−4 (2.45)

The Friedmann equation gives the expansion rate of the Universe in terms of matter and radi-
ation density,ρ, curvature,k, and the cosmological constant,Λ, as

H2 ≡
(

ȧ
a

)2

=
8πG

3
ρ− k

a2 +
Λ
3

(2.46)

where H ≡ ȧ
a is the Hubble parameter. Assuming spatially flat universe, we get

H2 =
8πG

3
ρ (2.47)
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Using total energy density expression 2.45, Freidmann equation 2.46 reads as

3H2 = 8πG
(

A +
B

a3(1+α)

) 1
1+α

+ ρb0a−3 + ρr0a−4 (2.48)

We can also make change of variables and use redshift, z, instead of using scale factor, a, which
is not a physically measurable quantity. The relation between redshift and scale factor is given
by

1 + z =
a0

a
(2.49)

where a0 is the scale factor at the present time which we normalize to 1. Freidmann’s equation
in terms of redshift can be written as

3H2(z) =
{[

A + B(1 + z)3(1+α)
] 1

1+a
+ (ρr0) (1 + z)4 + (ρb0) (1 + z)3

}
(2.50)

2.4.1 | Evolution of Chaplygin Gas
We can determine the evolution of the energy density of the CG during different epochs by
analyzing equation 2.42. At early times, a << 1, 2.42 can be written as

ρch =
B1/(1+α)

a3 (2.51)

Original CG energy density by using α = 1 can be written as

ρch =

√
B

a3 (2.52)

Therefore, at early times OCG corresponds to dust like matter(or dark matter). On the other
hand, at late times we can similarly show that

ρch = −p = A1/(1+α) = Constant (2.53)

Following the discussion in ??, we can conclude that CG at late times corresponds to a cosmo-
logical constant. Thus leads to the observed accelerated expansion. Therefore, we can further
conclude that CG evolves from the dust dominated epoch to cosmological constant in present
times, and thus CG model can unify CDM and the Λ model features. Therefore, the CG model
is a good alternative to explain the accelerated expansion of the universe. However the CG
model produces an exponential blowup of matter power spectrums that are inconsistent with
observations. Due to this, a modification of the CG model is proposed called Variable Chaply-
gin Gas model.
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2.5 | Variable Chaplygin Gas Model
Equation of state of the Variable Chaplygin Gas (VCG) is given by

ρch =
A(a)

p
(2.54)

where where p is the pressure, ρ is the energy density, both in a comoving reference frame with
ρ > 0, A(a) = A0a−n is a positive function of the cosmological scale factor a. A0 and n are
constants. Using 2.41, we can find the energy density of VCG as

ρch =

√
6

6− n
A0

an +
B
a6 (2.55)

where B is the positive integration constant. For n=0, OGC behaviour is recovered. Assuming
universe to be spatially flat, 2nd Freindmann equation can be written as

2
ä
a
+ H2 = −8πG

c2 p (2.56)

The acceleration condition, ä can be written as

(H2 +
8πG

c2 p)a < 0 (2.57)

Using equation of state of VCG 2.54 and energy density of VCG 2.55, we find the above accel-
eration condition is equivalent to

3
4− n
6− n

a6−n >
B
A0

(2.58)

As both B and A0 are positive constants, hence n < 4. At present time, a=a0= 1, hence, the
present value of the energy density of VCG is given by

ρch0 =

√
6

6− n
A0 + B (2.59)

Defining the parameter, Ωm,

Ωm =
B

6A0/(6− n) + B
(2.60)

the energy density becomes

ρch(a) = ρch0

[
Ωm

a6 +
1−Ωm

an

]1/2

(2.61)

Total energy density of the universe can be written as the sum of components 2.61, 2.43,
2.44, given by

ρtotal(a) =

(
ρch0

[
Ωm

a6 +
1−Ωm

an

]1/2
)
+ ρb0a−3 + ρr0a−4 (2.62)
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Defining Ωr0 = 8πGρr0
3H2

0
and Ωb0 = 8πGρb0

3H2
0

, Ωch0 = 8πGρch0
3H2

0
as dimensionless density parameters.

The density parameters for radiation and baryonic matter can be expressed as

Ωr(z) = (Ωr0) (1 + z)4, Ωb(z) = (Ωb0) (1 + z)3 (2.63)

The total density parameter for a universe where CG, baryonic matter and radiation dominate
can be written as

1 = Ωr(z) + Ωb(z) + Ωeh(z) (2.64)

Using total energy density expression 2.62 and 2.49, Freidmann equation 2.46 in terms of red-
shift reads as

H2 = Ωch0H2
0(1 + z)4X2(z) (2.65)

where

X2(z) =
Ωr0

1−Ωr0 −Ωb0
+

Ωb0

1−Ωr0 −Ωθ0(1 + z)
+

(
Ωm(1 + z)6 + (1−Ωm)(1 + z)n)1/2

(1 + z)4 (2.66)

To test VCG model, the above equation 2.66 is useful. There are two free paramters in the
above equation Ωm and n. We can use the distance modulus,µ, for Supernovae Type IA data
and gravitational waves from compact binary coalescence’s (CBCs), and calculate the corre-
sponding distance modulus for the CG model at corresponding redshifts.

2.6 | Bibliography Notes
This whole chapter was greatly influenced wide range of sources which are provided in the
reference section. The equations are derived from primary work done in Sethi et al. (2018)
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3
Standard Candles and Standard Sirens

3.1 | The Distance Ladder
To determine the distance standard candles are used. Standard candles are fictitious objects
of constant luminosity for which apparent magnitude is directly related to distance. Distances
are measured in a number of ways that are valid for different ranges and different types of
sources that rely on previous methods used to measure the distance, such as forming a ladder.
Astronomers build what is known as the cosmic distance ladder by combining several ways
for determining distances. Objects deemed to be of standard brightness are identified and cali-
brated in terms of measurements contributing to the preceding rung on each step of the ladder.
Thus, methods higher on the rung of the ladder depends on the lower rung to extend the dis-
tance range. Thus, to peek further into space where small-scale distance measurement methods
are rendered useless, we use methods higher on the rung. Therefore, studying methods to mea-
sure small scale distance is an important task. There are currently several sophisticated ways
for estimating the Hubble constant, but all of them rely on the distance ladder in some manner.

Figure 3.1: The Distance Ladder
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3.2 | The Parallax Method
The parallax approach, which is valid up to 50 kpc, i.e. the distance between adjacent satellite
galaxies, is one fundamental way for determining distance. This first stage serves as the foun-
dation for all subsequent procedures. When the Earth is at opposing points on the ecliptic (i.e.
2A.U.= 300 million kilometres apart), the goal is to discover the change in direction to a nearby
star with regard to the Sun. The star is at infinity if there is no change. Simple trigonome-
try demonstrates that if the parallax is 1 arcsec, the star is about 2 ∗ 1013 km distant, i.e. (by
definition) 1 parsec= 3.26 light years. The distance in general is then

d =
1pc

θ[arcsec]
(3.1)

3.3 | Cepheids
The standard candle (an astronomical source whose inherent brightness is supposed to be
known) is an essential instrument for determining distances to objects outside our galaxy. Sup-
pose a star has luminosity L and observers on Earth measure it to have a flux F. From the inverse
square law and assuming the star radiates isotropically, we obtain the luminosity distance

D =

√
L

4πF
(3.2)

Nature does not provide observers with stars whose luminosities are precisely known. How-
ever, it does provide stars and other objects whose luminosities can be inferred accurately. The
second most significant approach is based on Cepheid variable stars. These variable stars are
red giants that have reached the end of their lives. When the temperature rises, the He envelope
ionises; ionised He is very opaque to radiation from the core, which is trapped and expands
the envelope, making the star brighter. The temperature lowers as the envelope expands, and
the helium recombines (de-ionizes), making the envelope more transparent. The radiation es-
capes, the pressure drops, the envelope contracts, and the star dims. The contraction, on the
other hand, raises the temperature again, and the cycle begins again, lasting anywhere from a
few days to many weeks. For thousands of years, the series of oscillations has been relatively
steady. The relation between peak absolute luminosity and period is

L ∼ P1.3 (3.3)

By studying a group of such stars in the Small Magellanic Cloud—a dwarf galaxy near the
Milky Way—Henrietta Leavitt discovered in 1912 that each star’s oscillation period correlates
with its intrinsic luminosity. To fix the proportionality constant in this relation (and ensure
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Figure 3.2: The Parallax Method

that it is truly universal, i.e. it applies to all Cepheids), one must calibrate it, which means
measuring the luminosity and period for a number of nearby Cepheids for which we know
the distance (and thus the absolute magnitude) using the parallax method. This is the most
important stage, and it is essential for all other approaches. Cepheid variable stars can serve as
standard candles for determining distances beyond the boundaries of parallax after the lumi-
nosity–period relation has been empirically established.
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3.4 | Supernovae Ia
Supernova is a high-energy phenomena that takes place at the end of stellar evolution. Even-
though the discrete objects in the far away galaxies become faint and hard to resolve, a su-
pernova explosion makes an exception.The consistent luminosity curve and relatively homo-
geneous properties of a type Ia supernova make it the perfect choice of standard candle for a
cosmologist. In 1998 Riess et al. [High-redshift Supernova Search Team (HSST)] and Perlmut-
ter et al. [Supernova Cosmology Project (SCP)] independently reported the late-time cosmic
acceleration by observing distant supernovae of type Ia (SN Ia).

Supernova explosions are extraordinarily bright and causes a burst of radiation. Super-
novae can be categorised based on chemical element absorption lines. A supernova is cate-
gorised as Type II if its spectrum contains a spectral line of hydrogen. Otherwise, it is referred
to as Type I. If a supernova has an absorption line of singly-ionized silicon, it is designated
as Type Ia (notice that Type Ib has a helium line, but Type Ic lacks both silicon and helium
lines). When the mass of a white dwarf in a binary system surpasses the Chandrasekhar limit
by absorbing gas from a companion star, a Type Ia explosion occurs.

A white dwarf is a relatively simple object that cools passively by balancing gravity and the
electron degeneracy pressure, without undergoing nuclear fusion. When the mass surpasses
the limit, the star collapses, but unlike regular stars, the degeneracy pressure cannot rise since
it is temperature independent. The temperature rises so quickly that the heavier nuclei (mainly
C and O) fuse, and the thermal velocity of the particles surpasses the escape speed, causing
the star to burst. The Chandrasekhar limit depends only on fundamental constants, therefore,
one expects therefore that the energy emitted by the disruption of such an object is an almost
universal constant. This hypothesis must be tested, which may be done using the standard
calibration approach, i.e. a sample of nearby SN Ia for which we know the distance via other
methods, and from which we can get their absolute magnitude. Then the SN Ia become a kind
of “standard candle” against which luminosity distance may be measured.

3.5 | Cosmic Distances with Standard Sirens
To typical astronomy instrumentation, each gravitational event seemed completely dark—the
mass and electromagnetic fields around the merging black holes were insufficient to create
any signal other than gravity. Gravitational waves, as long predicted, have provided a door-
way into an otherwise inaccessible part of the cosmos. Initially, gravitational-wave astronomy
did not overlap considerably with more conventional astronomy till 17 August 2017 when a
gravitational-wave signal, followed by a burst of gamma rays, triggered one of the most in-
tense observing campaigns in the history of astronomy, and with this multi-messenger astron-
omy was born.
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Figure 3.3: White dwarf accreting matter from a red giant companion and then exploding as a
SNIa

Because gravitational waves encode the distance to their source, GW170817 gave another
achievement to the astronomical community: the first determination of the local cosmic expan-
sion rate—the Hubble constant—via gravitational waves. This watershed moment ushered
forth a fundamentally new method of measuring the dynamics of the universe: the standard-
siren methodology.

Standard sirens are excellent distance measurement tools. The standardized amplitude
gives us the idea of how far the source is. The gravitational waves from the merger events are
ripples in the spacetime fabric which due to the nature of the medium it is traversed, doesn’t
lose it’s energy on interaction with any gravitating object, be it baryonic matter or exotic matter.

Testing the performance of Variable Chaplygin Gas Model in two different energy spec-
trum, the electromagnetic radiations (Standard Candles) and gravitational waves (Standard
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Sirens) which are originated from two different events is a solid way to test the ability of the
model to mimic the nature of the Universe.

3.5.1 | Properties of Gravitational Waves
Many properties of the metric tensor hνµ are analogous to those of the vector potential that char-
acterizes electromagnetic radiation. Therefore, we will be able to see many similarities between
electromagnetic radiation and gravitational waves. For instance, much like electromagnetic ra-
diation’s electric and magnetic fields, gravitational waves are orthogonal to their direction of
propagation. Both electromagnetic and gravitational waves have two polarizations. The elec-
tromagnetic basis polarizations point along two orthogonal axes in the plane perpendicular to
the direction of propagation, and the electric force that a passing wave exerts on charges can
be decomposed into components along those basis directions. Gravitational waves also exert
forces normal to the propagation direction, but they act tidally, stretching along the perpen-
dicular axis. If the wave propagates along the z-axis, one polarization stretches and squeezes
along the x- and y-directions. That polarization is conventionally labelled h+. The other po-
larization, hx, stretches and squeezes along axes rotated by 45° from the x- and y-axes. For

Figure 3.4: Gravitational waves polarization

sources moving at much less than the speed of light, electromagnetic radiation is described by
the vector potential A that arises from a source’s time-varying electric dipole moment p:

Aj =
µ0

4π

1
D

dpj

dt
(3.4)

Here, D is the distance from the source, µ0 is the permeability of free space, and the index j
describes three spatial dimensions. The dipole moment is

p =
∫

ρcr′dV ′ (3.5)

where ρc is the charge density. There exisits analogous result for gravitational waves i.e.
quadrupole formula

hjk =
2G
c4

1
D

d2 Ijk

dt2 (3.6)
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where j,k are spatial and Ijk is the source’s mass quadrupole moment

Ijk =
∫

source
ρm

[
r′jr
′
k −

1
3
(
r′
)2

δjk

]
dV ′ (3.7)

where ρc is the source’s mass density. Now, our aim is to express mass quadrupole moment
in some quantities which can be easily measured and thus by using this we can measure the
distance to the source without any reference to the cosmic distance ladder. Binary inspiral
allows for a determination of the distance to the source.

3.5.2 | Binary inspiral: A Standard Siren
Consider a binary in a circular orbit. The gravitational waves it emits take energy from the
orbit causing the binary’s components to spiral toward each other. As the separation decreases
lowers, the orbital frequency increases, causing higher energy loss due to gravitational waves,
which causes the orbital separation to fall further, and so on. The binary therefore chirps;
gravitational waves increase in frequency and amplitude as they go from low to high frequency.
From Kepler’s law and a well-known formula that relates the power emitted in gravitational
waves to the binary’s changing quadrupole moment, it is possible to show that

dΩ
dt

=
96
5

(
GM
c3

)5/3

Ω11/3 (3.8)

where Ω is the frequency of the orbit, M = (m1m2)
3/5 (m1 + m2)

−1/5 is the chirp mass and m1
and m2 are the masses of the binary members. From the above equation, we find that the rate
of change of the frequency depends only on one parameter: the chirp mass. Once we know the
chirp mass, we can know how the frequency is changing at any point in the evolution of the
binary system.

Let us consider a circular orbit such that the normal to its orbital plane makes an angle i to
our line of sight. With that convention, i = 0° means the binary is viewed head on, and i = 90°
corresponds to an edge-on view. The wave amplitudes can thus be given as

h+ =
2c
D

(
G.I
c3

)5/3

Ω2/3 (1 + cos2 ι
)

cos 2Φ(t)

h× =
4c
D

(
G.L
c3

)5/3

Ω2/3 cos t sin 2Φ(t)

(3.9)

where Φ(t) is the accumulated orbital phase and the factor of 2 multiplying Φ(t) is due to the
waves’ quadrupolar nature. Chirp mass can be measured by matching the gravitational wave
observationally measured with the gravitational waveform model template. If it is possible to
measure more than one polarization, then the ratio of their amplitudes determines the inclina-
tion angle i. Once chirp mass and inclination angle are known, the distance to the source is
determined.
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Figure 3.5: Gravitational Waveform Model Template

Binary inspiral thus acts as a standard siren as it does not require the cosmic distance lad-
der. To calculate the source distance, no empirical calibrations are required; the only essential
assumption is that general relativity is correct.

3.6 | Bibliography Notes
Section 3.4 is influenced by the work done in Sethi et al. (2018).

23



4
Datasets and Calibration

4.1 | Type Ia Supernova dataset and calibration
The SCP (Supernova Cosmology Project) Union 2.1 dataset is compilation of 833 Type Ia Super-
novae events collected and merged from 19 individual dataset. We have taken 580 events from
the overall dataset, as these events are completely verified and could be trusted with higher
level of confidence. The dataset consists of data like redshift obtained from the event, distance
modulus of the event and the potential error factor involved in estimation of the distance mod-
ulus.

The luminosity distance of the Supernovae event could be expressed as a function of red-
shift of the event pertaining to the Variable Chaplygin Gas Model. In a flat universe in which
the parameter are constrained by the Variable Chaplygin Gas Model, the luminosity distance
can be expressed as

dL(z, p) = c(1 + z)
∫ z

0

dz′

H(z′, p)
(4.1)

where z is the redshift, H is given by

H2 =
8πG

3
(ρr0(1 + z)4 + ρb0(1 + z)3 + ρch0[Ωm(1 + z)6 + (1−Ωm)(1 + z)n]

1/2
) (4.2)

where ρr0 and ρb0 are the current energy densities of radiation and baryons in the universe. ρch0

is the energy density of Variable Chaplygin Gas entity consist of Dark Matter and Dark Energy.
The p in the previous equation denotes all other parameters of the given cosmological model.

4.2 | GWMerger Events Dataset
The Gravitational Merger events are obtained from the GWOSC (Gravitational Wave Open Sci-
ence Center) which has the events obtained from detectors at LIGO Hanford, LIGO Livingston
and LIGO Virgo. The data set consist of many confirmed events and potentially true events
which are yet to be confirmed in it. The events are collected across all the three runs: O1 (from
12 September 2015 to 19 January 2016), O2 (from 30 November 2016 to 25 August 2017) and
the O3 runs, O3a (from 1 April 2019 to 30 September 2019) and O3b (from 1 November 2019 to
March 2020).
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There were in total 53 confirmed events in the currently data set. All these confirmed events
were taken to test the efficiency of the Variable Chaplygin Gas Model to predict the luminosity
distance of the event from the redshift obtained from the gravitational merger events and com-
pare with luminosity distance obtained from the merger event by analysis of the wave received
at the detector.

4.3 | Luminosity Distance from Merger Events
When a gravitational wave passes through the laser interferometer, it elongates the distance
between the source and the reflector in the end in one arm and contracts the reflector length
from the source in the other arm which is almost perpendicular to the elongated arm. This al-
ternative elongation and contraction in the perpendicular arms, due to the quadrupole nature
of the gravitational waves, causes path difference between the laser beams running between
the arms and results in interference. The beams from perpendicular arms are made to inter-
fere destructively in the standalone state but produce light by the interference induced by the
passage of gravitational waves. The extent of elongation or contraction is determined by the
amplitude of the gravitational wave passing the detector.

Since gravitational waves distort the geometrical length between the arms to cause inter-
ference, the amplitude of the laser beam from the interference pattern is directly related to the
amplitude of the gravitational wave signal from the merger event. The gravitational waves
weakly interact with matter, so the amplitude measured in the detector is an absolute quantity
that one could measure from the merger events which provides insights about the events.

The amplitude of the wave/signal from the merger event is a function of linear separation
between the binary, angular velocity of the system and also inversely proportional to the dis-
tance at which the event has occurred. This amplitude is a scale to quantify the energy emitted
from the merger event as gravitational waves. Therefore we can express Luminosity of the
merger event as a function of angular velocity, angular separation and distance. This luminos-
ity is analogous to the luminosity described for stellar objects in electromagnetic counterparts.

h =
G5/3

c4
µa2ω2

r
(4.3)

where, h is the Amplitude of the wave , µ is the reduced mass of the system = m1m2
m1+m2

, m1 and
m2 are the mass which are part of the binary system, a is separation between masses, r-distance
between observer and ω - orbital velocity.

L =
dEGW

dt
≈ G

c5 h2ω2 ≈ G
c5 µ2a4ω6 (4.4)

where, dEGW
dt is the rate of energy emitted by the binary event as gravitational waves.
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Luminosity is a measure of energy emission from a given source. In case of binary merger
events, the energy is transferred from the lost orbital energy of the binary system as the masses
inspiral towards each other. So, the ratio between the frequency and the rate of change of
frequency is proportional to the ratio between the separation of the mass in the system and the
rate of change of this separation at successive orbits.

ω

ω̇
=
−3
2

a
ȧ
=

f
ḟ

(4.5)

where, f = ω
π is the frequency of the signal and ḟ = ω̇

π is the rate of change in frequency
The ratio of frequency to the rate of change of frequency can be found from the waveform

of the signal. The iconic chirp waveform of the gravitational wave from the detector helps us in
obtaining the maximum amplitude, frequency and its ratio to the rate of change of frequency.
From the above information, the luminosity distance (in Megaparsec (Mpc)) of a merger event
can be found:

R =
512
h21

(
0.01

τ
)(

100Hz
fGW

)
2

(4.6)

the τ is the subtle expression for the ratio of the frequency of the gravitational wave to the
rate of change in the frequency as the separation between the masses of the binary system gets
reduced as they inspiral towards each other

τ =
fGW

˙fGW
(4.7)

where, R - luminosity distance, h21 - amplitude caused by the inspiral of mass 1 and mass 2 of
the binary system.

4.4 | DistanceModulus - FlatΛCDMModel andVCGModel
The distance modulus is a logarithmic scaling term used to describe the distance of an energy
radiating entity in astronomy. The distance modulus µ can be expressed as the difference be-
tween the apparent magnitude (m) and the absolute magnitude (M).

4.4.1 | Supernova Type Ia dataset
The distance modulus that is provided in the SNe-Ia dataset is given by the ΛCDM Model for
a given redshift as

µobs = a(t0)r(1 + z) (4.8)

where a is the scale factor. The scale factor (a) in a flat universe can be expressed as 1
(1+z) . t0 is

the Hubble Time which is 1
H0

, where H0 is the Hubble Parameter value in the current epoch. z
is the redshift value of the entity under study.
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The r in Eq. (3.8) is the coordinate distance. In a flat ΛCDM model universe, the r is ex-
pressed as

r =
∫ t0

t

cdt
a(t)

=
c

a0H0

∫ z

0

dz′

h(z′)
(4.9)

The a0 is the value of the scale factor in the observer’s immediate surrounding. It is found to
numerically equal to 1. The h is Hubble parameter value for the region of space of the given
redshift. The h is expressed as

h(z) = [
(
1−Ωtotal)(1 + z)2 + Ωm(1 + z)3 + ΩΛ(1 + z)p]1/2

(4.10)

in a flat universe, Ωtotal = 1 and p is numerically equal to 1. So, the equation becomes

h(z) = [Ωm(1 + z)3 + ΩΛ
]1/2

(4.11)

so,

µobs =
1

H2
0(1 + z)

c
a0

∫ z

0

dz′

[Ωm(1 + z′)3 + ΩΛ]
1/2 (4.12)

the reason why the redshift (z) inside the integral is dashed is to differentiate it with the redshift
term outside the integration, and to denote that the denominator of the integral as a variable
entity unlike the redshift term outside the integral.

The redshift of the given supernova event is used to calculate the distance modulus of the
event and it is available in the SCP dataset.
With the Variable Chaplygin Gas Model, the distance modulus is given as

µth = 5 log dL(z)− 5 log h + 42.38 = 5 log dL(z) + 5log
(

cH0

1Mpc

)
+ 25 (4.13)

the dL is obtained from equation 3.1

4.4.2 | Gravitational Wave Merger dataset
The standard distance modulus of the merger event is calculated from the luminosity distance
obtained by the signal of the merger event as described in section 3.4 as

µobs = 5 log dL − 5 (4.14)

where dL is the distance modulus obtained from the wave analysis.
The µth part is obtained from Equation 3.13, where the dL is a function of redshift given by

the wave analysis of signals from merger events. The expression for dL is given at Equation 3.1.
The µobs is termed as observed distance modulus that is given in the database from standard

cosmological model, the ΛCDM Model. The µth is the theoretical distance model, obtained
from Variable Chaplygin Gas (VCG) Model.
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4.5 | Bibliography Notes
This chapter is inspired from Supernova Cosmology Project and GWOSC webpages.
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5
Gravitational Waves Data Analysis

5.1 | Gravitational Waves Data Access

5.1.1 | Packages
Some of the useful python packages used in gravitational wave astrophysics are as follows:
GWOSC - The GWOSC package helps in accessing the open data releases hosted on GWOSC
from the GEO, LIGO Hanford and Livingston, and Virgo gravitational-wave observatories.
Gwpy - GWpy is a Python package providing tools for studying data from ground-based
gravitational-wave detectors. GWpy provides a user-friendly, intuitive interface to the com-
mon time-domain and frequency-domain data produced by the LIGO and Virgo instruments
and their analysis.
PyCBC - PyCBC is a package used to explore astrophysical sources of gravitational waves that
provides functionality to analyze gravitational-wave data, detect the signatures of compact bi-
nary mergers, and estimate the parameters of a potential source.

Note: LIGO/VIRGO data is provided in different formats:
1)HDF5: HDF5 is a high performance data software library and file format to manage, process,
and store your heterogeneous data. HDF5 is built for fast I/O processing and storage. This file
format is easily readable in Python, C++ and IDL. The file extension of HDF5 file is .h5.
2) Frame format (.gwf) - GWOSC data files in the gravitational wave frame file format (.gwf)
may be read using the Frame Library.
3) Text file - GWOSC data is also available as a text file (.txt).

5.1.2 | Initialization
Installing and importing some packages necessary for the data analysis.

1 # Uncomment if running in Google Colab
2 #! pip install -q 'gwosc==0.5.4'
3 #! pip install -q 'gwpy==2.0.2'
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Important: With Google Colab, you may need to restart the runtime after running the cell
above.

1 import gwosc
2 import gwpy
3

4 print(gwosc.__version__)
5 print(gwpy.__version__)

5.1.3 | Accessing datasets from GWOSC library

1 from gwosc.datasets import find_datasets, event_gps, run_segment
2 from gwosc.locate import get_event_urls
3 from gwosc import datasets

The GWOSC library helps to access the released public datasets from LIGO/Virgo gravitational
wave runs. The gwosc.datasets.finddatasets function allows to browse datasets of events, cata-
logs and observational runs. We can further constrain the events by the segment time, detector
they were detected in, and catalog which they have been published. Below, I show how can we
obtain the dataset step by step.
Request list of events from the specific detector (V1,L1,H1,G1):

1 H1events = find_datasets(detector="H1") # request events from other detectors
2 print(H1events)

It is also possible to list available catalogs (you can then choose your event from the catalog
paper, for instance GWTC-2):

1 print("List of catalogs: \n \n", find_datasets(type="catalog"))
2

3 print("List of events: \n \n", find_datasets(type="event"))
4

5

6 gwtc = datasets.find_datasets(type='event', catalog='O3_Discovery_Papers')
7 #gwtc = datasets.find_datasets(type='event', catalog='GWTC-1-confident')
8 print('O3 events:', gwtc)

The run type calls the strain data sets from LIGO/Virgo observing runs. The datasets are large
and have sampling frequencies from 4 - 16 [kHz]
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1 gwrun = find_datasets(type='run')
2 print('Full datasets from runs:', gwrun)

We can print the GPS starting and end time of the above datasets, with the gwosc.datasets.run
segment function:

1 #run_segment??
2

3 print(run_segment('O3a_16KHZ_R1'))

I will analyse the event from the 03a run (e.g. GW190521). The gwosc.datasets.eventgps func-
tion returns the GPS time since January 6, 1980.

1 gps_event = event_gps('GW190521-v3')
2 print(gps_event)

we can also recover the url associated HDF5 data files with the gwosc.locate.geteventurls func-
tion:

1 urls = get_event_urls('GW190521-v3')
2 print(urls)

5.2 | Gravitational Waves Data Quality

5.2.1 | Accessing data from GWpy and analysing the datasets
The data can be fetched for any particular event by function fetchopendata from the gwpy.timeseries.
TimeSeries class.

1 #TimeSeries.fetch_open_data??

We can fetch the data from the event selected in the previous section (GW190521) and from a
particular interferometer (e.g. Ligo Hanford H1).
For this example we choose to retrieve data for the LIGO-Hanford interferometer, using the
identifier ’H1’. We can choose any of the identifier listed below:

� ’G1’ - GEO600
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� ’H1’ - LIGO-Hanford

� ’L1’ - LIGO-Livingston

� ’V1’ - (Advanced) Virgo

In future, the Japanese observatory KAGRA will come online, with the identifier ’K1’.

5.2.2 | Handling data in the time domain

1 from gwpy.timeseries import TimeSeries
2 length_seg = 128
3 h1_data = TimeSeries.fetch_open_data('H1', gps_event-length_seg, gps_event+length_seg, verbose=True)
4 print(h1_data)

The verbose=True flag let us see that GWpy has discovered two files that provides the data for
the given interval, downloaded them, and loaded the data.
The files that are fetched are not permanently stores, so next time when you run the cell it
will again download it, in some case if you don’t want it to download repeatedly, one can use
cache=True to store the file on your computer.
For visual representation one can plot using the plot() method of the data TimeSeries. Strain
Plot using using the plot() method of the data TimeSeries.

GWpy is used to deal with time series and frequency series. The gwpy.timeseries.TimeSeries.plot
method allows to directly plot objects from the Timeseries class, with UTC time in the label.

1 #type(gwpy.frequencyseries.frequencyseries.FrequencySeries)
2

3

4 %matplotlib inline
5 plot = h1_data.plot(figsize=(9, 4), title='Strain plot for event from H1');
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5.2.3 | Handling data in the frequency domain using the Fourier trans-
form

We can recover the frequency content of the above time series by using the gwpy.timeseries.
Timeseries.fft function (based on numpy.fft.rfft) which yields a FrequencySeries instance, ap-
propriately normalized.

1 #TimeSeries.fft??
2

3 fft = TimeSeries.fft(h1_data)
4 print(fft)

The result is a TimeSeries, with complex amplitude, representing the amplitude and phase of
each frequency in our data. We can use abs() to extract the amplitude and plot that:

1 plot = fft.abs().plot(xscale="log", yscale="log",figsize=(6,6), title='ASD%
2 with no window')
3 #plt = plot
4 #plt.savefig('ASDH1.png',dpi=300)

The problem with the plot is that the FFT works under the assumption that our data are pe-
riodic, this implies that the end of our data appears to be discontinuities when transformed.
To optimize this a window function is applied to the time-domain data before transforming,
which can be done using scipy.signal module:

1 from scipy.signal import get_window
2 window = get_window('hann', h1_data.size)
3 hwindow = h1_data * window
4 fftamp = hwindow.fft().abs()
5 plot_new = fftamp.plot(xscale="log", yscale="log", figsize=(6,6), title='ASD with%
6 Hann window')

Also instead of applying a single FFT, it is good practice to recover the spectral properties of
the GW strain applying an averaging method. This can be achieved with the gwpy.timeseries.
TimeSeries.asd, which returns an averaged ASD computed with the segment, into a Frequen-
cySeries.

1 #gwpy.timeseries.TimeSeries.asd??
2

3 asd_h1 = h1_data.asd(fftlength=2, window='hann', method="welch")
4 plot = asd_h1.plot(title='Welch avg. ASD from 10 to 1500 Hz', figsize=(6,6),%
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5 label = 'LIGO:Hanford',color='gwpy:ligo-hanford')
6 ax = plot.gca()
7 ax.set_ylabel(r'Strain noise [$1/\sqrt{\mathrm{Hz}}$]')
8 ax.set_xlim(10, 1500)
9 ax.set_ylim(1e-24, 1e-20);

Similarly the plot of Welch avg. ASD can be obtained for the other two detectors as well.

Figure 5.1: no window
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Figure 5.2: ’Hann’ window

This is what a typical GW detector ASD curve looks like. It is the sum of contributions by
a wide variety of noise sources (seismic and newtonian, thermal, quantum etc etc). We can
observe in particular some spectral lines and peaks (see for instance, the description for O2
lines https://www.gw-openscience.org/o2speclines/)
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5.2.4 | Time-Frequency representation
The Amplitude Spectral Density(ASD) and timeseries plot is useful but only by looking at them
does not specify the low Signal-to-Noise(SNR) events. Therefore, a time-frequency representa-
tion is preferred, which tracks the evolution of the ASD or PSD in time. It can be plotted using
the TimeSeries methods spectrogram and/or spectrogram2.

5.2.5 | Q-transforms in GWpy
A better way is to use multi-resolution methods, such as the wavelet transform or the Q-
transform, which involves logarithmic tiling in the time–frequency plane. The quantity Q is
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a measure of the burst’s aspect ratio in the time-frequency plane.

fc

σ f

1 h1_q = h1_data.q_transform(frange=(30, 200), outseg=(gps_event-0.25,gps_event+0.25))
2 # outseg to zoom around merger
3 plot = h1_q.plot(title='GW190521 at H1', figsize=(9,5))
4 plot.colorbar(label="Normalised energy");

Similarly the chirp can be obtained for other detectors as well.
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5.3 | Gravitational Wave Results

5.3.1 | Generating Waveforms
Here we’ll generate the gravitational waveform using one of the available waveform approx-
imants. The waveform can be generated as a time series using get_td_waveform(). There
are some additional examples using this interface here. The key parameters are the masses
of the binary (given in solar masses), the time between samples (in seconds), the starting
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gravitational-wave frequency (Hz) and the name of the approximant we’d like to use. A vari-
ety of approximants are available that include different physical effects.

In this example, we’ve chosen to use the ’SEOBNRv4_opt’ approximant. This is an im-
plementation of the model introduced in this paper. It models the gravitational waveform of
inspiralling and merging black holes, and includes the ability for each black hole to spin in the
same direction as the orbit (aligned spin).

There are many other models available, with different methodologies employed and phys-
ical effects modelled. A full review of the models is outside of the scope of this tutorial.

We can see that in this case, the two polarizations differ only by the phase of the signal. This
is a known property of the signal, when the orbital plane of the binary does not precess (i.e. the
individual black holes spins are aligned with the orbital angular momentum). In the zoom-in
plot, we can see the merger itself and the ringdown that follows.

5.3.2 | Change in Binary mass affects the waveform
Below you can see how the length of the waveform increases for lower-mass binary mergers.
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5.3.3 | Changing the distance of the waveform

5.3.4 | Matched Filtering
We will be using the PyCBC library, which is used to study gravitational-wave data, find astro-
physical sources due to compact binary mergers, and study their parameters. The techniques
to find astrophysical signals may not be exact but we have been consistently comparing our
results with the published results along with the workshops conducted by LIGO.

5.3.4.1 | Looking for a peculiar signal in the data

If you know what signal you are looking for in the data, then matched filtering is known to be
the optimal method in Gaussian noise to extract the signal. Even when the parameters of the
signal are unknown, one can test for any set of parameters one is interested in finding.

5.3.4.2 | Preconditioning the Data

The purpose of preconditioning data is to reduce the dynamic range of the data and to supress
low frequency behavior that can introduce numerical artefacts. We may also wish to reduce the
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sample rate of the data if high frequency content is not important.

PyCBC contains an interface to the GWOSC catalog, so you can easily access the data and
parameters of the published gravitational-wave signals.
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5.3.4.3 | Wrapping a filter around

Note the spike in the data at the boundaries. This is caused by the highpass and resampling
stages filtering the data. When the filter is applied to the boundaries, it wraps around to the
beginning of the data. Since the data itself has a discontinuity (i.e. it is not cyclic) the filter itself
will ring off for a time up to the length of the filter.

Even if a visible transient is not seen, we want to avoid filters that act on times which are
not causally connected. To avoid this, we trim the ends of the data sufficiently to ensure that
they do not wrap around the input. We will enforce this requirement in all steps of our filtering.

5.3.4.4 | Calculating Power Spectral Density

Optimal matched filtering requires weighting the frequency components of the potential sig-
nal and data by the noise amplitude. We can view this as filtering the data with the time series
equivalent of 1 / PSD. To ensure that we can control the effective length of the filter, we win-
dow the time domain equivalent of the PSD to a specific length. This has the effect of losing
some information about line behavior in the detector. However, since our signals span a large
frequency range, and lines are narrow, this is a negligible effect.

Important note: Computing a PSD from data that might contain signals, non-Gaussianities
and non-stationarities is not trivial. In this example we use Welch’s method to obtain a PSD esti-
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mate. PyCBC’s PSD module contains tools for measuring PSDs, or directly using pre-generated
PSDs.

5.3.4.5 | Creating Your own Signal Model

Conceptually, matched filtering involves laying the potential signal over your data and inte-
grating (after weighting frequencies correctly). If there is a signal in the data that aligns with
your "template", you will get a large value when integrated over.

In this case we “know" what the signal parameters are. In a real search we would grid over
the parameters and calculate the SNR time series for each one.

We will assume equal masses, and non-rotating black holes which is within the posterior
probability of GW150914.

The waveform begins at the start of the vector, so if we want the SNR time series to cor-
respond to the approximate merger location, we need to shift the data so that the merger is
approximately at the first bin of the data.

The cyclic_time shift method shifts the timeseries by a given amount of time. It treats the
data as if it were on a ring so points shifted off the end of the series reappear at the start.
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Note that time stamps are not in general affected (as the start time of the full array is shifted),
but the index of each point in the vector is.

By convention, waveforms returned from gettdwaveform have their merger stamped with
time zero, so we can use the start time to shift the merger into position.
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5.3.4.6 | Calculating the Signal-to-Noise Time Series

In this section we will calculate the signal-to-noise time series for our template. We’ll take care
to handle issues of filter corruption / wraparound by truncating the output time series. We
need to account for both the length of the template and 1 / PSD.

We found a signal at 1126259462.4248047s with SNR 19.677089013145903

5.3.4.7 | Aligning and Subtracting the Proposed Signal

In the previous section we found a peak in the signal-to-noise for a proposed binary black hole
merger. We can use this SNR peak to align our proposal to the data, and to also subtract our
proposal from the data.

5.3.4.8 | Overlapping the signal and the data

To compare the data an signal on equal footing, and to concentrate on the frequency range that
is important. We will whiten both the template and the data, and then bandpass both the data
and template between 30-300 Hz. In this way, any signal that is in the data is transformed in
the same way that the template is.
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5.3.4.9 | Subtracting the Signal from the Data

Now that we’ve aligned the template we can simply subtract it. Let’s see below how that looks
in the time-frequency plots!
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6
Statistical Analysis

6.1 | Overview
In order to find the right combination of the constrains Ωm and n for which the model provides
best fit of the luminosity distance and the distance modulus, a χ2 test is conducted between the
observed values in the dataset and the calculated values from the model. χ-squared is a test
to verify a hypothesis proposed to explain the distribution in a given dataset. The hypothesis
or the equation that is devised to fit the distribution of the data-points from given parameters
are generally termed as Null Hypothesis. These null hypothesis when tested with a χ2 test
provides a numerical value which defines the goodness of the hypothesis. This numerical
value should be equal to or be around the numerical value of the total number of data-points
involved in the dataset. χ-squared test provides a clear picture on the performance of the
model.

6.2 | Hypothesis Testing
A statistical hypothesis test is a statistical inference procedure that is used to determine a con-
clusion from two conflicting hypotheses, i.e. null hypothesis and alternative hypothesis. If
the result from the sample has the probability of occurence greater than significance value, as-
suming null hypothesis is correct, then null hypothesis and sample result are not statistically
significant and vice versa. In other words, the sample thus leads to acceptance of our null
hypothesis.

6.3 | Chi Square Distribution
The chi-squared distribution with k degrees of freedom is the distribution of a sum of the
squares of k independent standard normal random variables, which is used in inferential statis-
tics, notably in hypothesis testing and in construction of confidence intervals. The chi-squared
distribution is used primarily in hypothesis testing. The chi-squared distribution has one pa-
rameter: a positive integer k that specifies the number of degrees of freedom. The chi-squared
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distribution is applied in modeling of natural phenomena and used in Pearson’s chi-squared
test.

6.4 | Pearson’s χ2 Test
To see if there is a discrepancy between the theoretical population parameter and the observed
data, a Chi-square test is used. Karl Pearson developed this test for categorical data analysis
and distribution in 1900. As a result, it was referred to as Pearson’s chi-squared test. The chi-
square test is used to quantify the likelihood of observations made under the premise that the
null hypothesis is true. A hypothesis is a possibility that a certain condition or statement is
true, which we may then test.

The standard equation to determine the goodness value of the χ2 test for distance modulus
is given by

χ2 = ∑
i

[
µi

th − µi
obs

σi

]
(6.1)

where µth is the distance modulus value obtained from the theoretical calculation of the cosmo-
logical model and µobs is the observed value of distance modulus in the dataset. σ is the possible
magnitude of error in the observed distance modulus given by the dataset. The

[
µth−µobs

σ

]
is cal-

culated for each data-point and is summed for the total dataset.
In order to make to attribute the performance of other non constrained factors like the Hubble
Parameter H0, the equation is modified as

χ2 = ∑
i

[
µi

th − µi
obs

σi

]
− C1

C2

(
C1 +

2
5

ln 10
)
− 2ln h (6.2)

The terms C1 and C2 are given by

C1 = ∑
i

µi
th − µi

obs
σ2

i
(6.3)

C2 = ∑
i

1
σ2

i
(6.4)

h is the dimensionless Hubble parameter

h =
H0

100(km)(s−1)(Mpc−1)
(6.5)

6.5 | Bibliography Notes
The Equations are derived from primary work done in Sethi et al. (2018)
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The technical aspects of the χ-squared test and χ2 goodness value in Section 4.1 is inspired
from Chi (2010)
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7
Discussion & Conclusions

7.1 | Discussion

7.1.1 | Calibration with SNe-Ia Dataset
Before analyzing the performance of Variable Chaplygin Gas Model with Gravitational Merger
Event, it has to be calibrated with respect to the SCP Union Type Ia supernovae data to compare
the results of the model generated to the previous published results on the model to provide
credibility to the model performance on Merger events. Variable Chaplygin Model has a pro-
vided a best fit to the SNe-Ia dataset for Ωm = 0.15 and n = 0.79 with a χ2 goodness value of
566.296 for the distance modulus.

Figure 7.1: Performance of VCG Model to determine Distance Modulus (Green) with respect
to the Distance Modulus from SCP Dataset (Red) against Redshift - Ωm=0.15, n = 0.79 and

H0=69.8
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The performance VCG Model to determine luminosity distance is also included

Figure 7.2: Performance of VCG Model to determine Luminosity Distance (Green) with
respect to the Luminosity Distance from ΛCDM Model (Red) against Redshift - Ωm=0.15, n =

0.79 and H0=69.8

The graph depict the performance of the VCG devised against standard SCP Dataset. This
provides credibility to the model has the predicted values of Ωm and n closer to values from
published papers: Guo Zhong [Ωm=0.25, n=-2.9] and Sethi [Ωm=0.22, n=-2.8].

7.1.2 | Model performance on Gravitational Merger Events
The Variable Chaplygin Gas Model, provided a best fit to the gravitational wave merger events
obtained from GWOSC, for Ωm = 0.17 and n = -8.7 with a χ2 goodness value of 0.388 for the
distance modulus.

Similarily the perforance of VCG Model in determining Luminosity distance is given in the
following plot

52



Chapter 7. Discussion & Conclusions 7.1. Discussion

Figure 7.3: Performance of VCG Model to determine Distance Modulus (Green) with respect
to the Distance Modulus from ΛCDM Model (Red) against Redshift from GWOSC Dataset -

Ωm=0.17, n = -8.7 and H0=69.8
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Figure 7.4: Performance of VCG Model to determine Luminosity Distance (Green) with
respect to the Luminosity Distance from ΛCDM Model (Red) against Redshift from GWOSC

Dataset - Ωm=0.17, n = -8.7 and H0=69.8
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8
Future Work

8.1 | New Datasets
The GWOSC Dataset has added new confirmed events added from O3a and O3b runs. Includ-
ing them into the dataset would be beneficial to constrain the cosmological parameters Ωm and
n with tighter bounds.

8.2 | Range of Constraints - Contour Plots
A contour plot to determine the validity of χ2 goodness value will be plotted. This provides
more credible proof about the modified χ2 test that has been implemented for VCG Model.

8.3 | Determination of H0

With the parameters obtained from χ2 test on GWOSC dataset, we could find the value of
Hubble Parameter in the current epoch within our immediate surroundings of the Universe.

8.4 | Statistical tests
We are aiming to use Markov chain Monte Carlo (MCMC) method to analyze non-gaussian
uncertainties in GW merger events datasets.
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